P2575

SEAT No. :

[Total No. of Pages : 5

[5257]-5002 T. Y. B. Arch. THEORY OF STRUCTURES - V (2015 Pattern)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Solve Any Three Questions From Each Section
- 2) Figures to the right indicate full marks
- 3) Assume suitable data where necessary only
- 4) Use M 20 Grade concrete and Fe 500 grade steel
- 5) Every R. C. C. Design should be accompanied by relevant Schedule and Reinforcement Sketch.
- 6) Use of non-programmable Calculators Allowed.

<u>SECTION - I</u> (Solve any Three)

- Q1) Design the Staircase Slab of the Building Shown in the accompanying sketch.
 Tread = 290mm, Number of Treads in each Flight = 11, Floor to Floor
 Height = 3800, Mid Landing = Upper Landing = 1400mm. The Staircase Slab
 is Supported on 230mm wide Beams on the Inner Edges of the Landings. [12]
- **Q2)** a) Design the Beam B2 as a L Beam across span 6.8m. Restrict the overall depth to 550mm. Assume Slab Depth = 120 of Slab S1 & S2 Take Live Load as $4kN/m^2$. Design for Flexure only [8]
 - b) State the Advantages of a T Beam. Explain how to calculate the Flange Width of a L Beam. [4]

P.T.O.

Q3) Design Beam B4 as a Doubly Reinforced Beam of Clear Span 7.39m to carry an u.d.l of 24kN/m. Restrict the Overall depth to 550mm. Design for flexure and Shear.

100 A	Conc					
	M 15	м	20	M 25		
(1)	(2)		(3)	(4)		
s 0.15	0.28	0.28		0.29	0.29	
0.25	0.35	0.36		0.36		
0.50	0.46	0.48		0.49		
0.75	0.54	0.56		0.57		
1.00	0.60	0.62		0.64		
1.25	0.64	0.67		0.70		
1.50	0.68	0.72		0.74		
1.75	0.71	0.75		0.78		
2.00	0.71	0.79		0.82		
2.25	0.71	0.81		0.85		
2.50	0.71	0	.82	0.88		
2.75 0.71		0.82		0.90		
3.00	0.71	0	.82	0.92		
fy in N/mm²		d'/de				
		0.05	0.1	0.15	0.2	
fsc for fy = 415 N/mm ²		355	353	342	329	
free for $f_{\rm M} = 500 \rm N/mm^2$		424	412	395	370	

Table 19 Design Shear Strength of Concrete, τ_e, N/mm² (Clauses 40.2.1, 40.2.2, 40.3, 40.4, 40.5.3, 41.3.2, 41.3.3 and 41.4.3)

- *Q4*) a) Write Short Notes on any two of the Following drawing sketches wherever necessary [6]
 - i) Piles Need, Explain any two Types of Piles briefly
 - ii) Different Types of Deep Foundations.
 - iii) Reinforcement Detailing in a Central Stringer Beam Staircase with Cantilever Treads.
 - iv) Write down the assumptions in Rankine's theory of Earth Pressure
 - b) Draw the Reinforcement Detail of the Slabs S1. -S2-S1 from the Schedule given below [5]

Slab Schedule

Slab	Depth	Steel along shorter span		Steel Along Longer Span	Remark
		Bottom Reinforcement	Top Reinforcement at Supports		
S1	120	10Ф @ 200c/c	10Ф@180c/c	8Ф @ 325c/c	One way Continuous
S2	120	10Ф @ 250c/c	10Ф@180c/c	8Φ @ 325c/c	One way Continuous

SECTION - II (SOLVE ANY THREE)

- **Q5**) An U.C.R Masonry wall is to be provided to retain Earth on its Vertical Face. Density of Retained Earth = 16kN/m³, Density of Masonary = 25kN/m³ Top Width of Wall = 1.2m, Take Bottom Width of wall = 0.6h Height of Wall = 4.8m = h, Angle of Repose = 30° , Coefficient of Friction $\mu = 0.6$, S.B.C of Soil = 225kN/m². Check the Stability of the wall with respect to Overturning and Sliding and Calculate Maximum and Minimum Pressure at Base [12]
- Q6) a) Explain the Dis-Advantages of Pre- Stressed Constructions over conventional R.C.C Construction. [4]
 - b) A Pre- stressed beam of size 300 x 700 is simple supported on a span of 11m. It carries an udl of 35 kN/m over its entire span inclusive of its self-weight. It is pre-stressed by tendons supplying 2200 kN force which are placed at 125mm below the neutral axis. Calculate the extreme fiber stresses at end span (support) and at mid span. [8]
- Q7) a) Two Columns of size 300 x 300 and 400 x 400 spaced 2.0m apart rest in a Soil of S.B.C 200kN/m². They carry loads of 600kN and 1100 kN respectively. Design the combined footing in plan only. Take Length of the footing as 2.0 times the width.
 - b) Write a Short Note on Raft Foundation Need and Advantages [3]

OR

Q8) Find the Load acting on column C1 per floor. Assume Load on B2 to be 38kN/m and Load on B3 to be 20kN/m. Calculate Load on every Floor considering Parking + 5 Floors. Design Column on First Floor using 3% steel and take one side as 230. Keep the length the same and change the width and design Column on Parking Floor. Draw Sketch of reinforcement of both the columns. [12]

[5257]-5002

Q9) Design the Isolated Pad Footing of a Column 250 x 650 to carry a load of 1600kN in a Soil of S.B.C 240KN/m². Check for Single Shear. Draw Sketch of Reinforcement. [11]

ശങ്ങ

[5257]-5002