\square

T. Y. B. Arch.

THEORY OF STRUCTURES - V

(2015 Pattern)

Time : 3 Hours]

[Max. Marks : 70
Instructions to the candidates:

1) Solve Any Three Questions From Each Section
2) Figures to the right indicate full marks
3) Assume suitable data where necessary only
4) Use M 20 Grade concrete and Fe 500 grade steel
5) Every R. C. C. Design should be accompanied by relevant Schedule and Reinforcement Sketch.
6) Use of non-programmable Calculators Allowed.

SECTION - I (Solve any Three)

Q1) Design the Staircase Slab of the Building Shown in the accompanying sketch. Tread $=290 \mathrm{~mm}$, Number of Treads in each Flight $=11$, Floor to Floor Height $=3800$, Mid Landing $=$ Upper Landing $=1400 \mathrm{~mm}$. The Staircase Slab is Supported on 230mm wide Beams on the Inner Edges of the Landings. [12]

Q2) a) Design the Beam B2 as a L Beam across span 6.8m. Restrict the overall depth to 550 mm . Assume Slab Depth $=120$ of Slab S1 \& S2 Take Live Load as $4 \mathrm{kN} / \mathrm{m}^{2}$. Design for Flexure only
b) State the Advantages of a T Beam. Explain how to calculate the Flange Width of a L Beam.

Q3) Design Beam B4 as a Doubly Reinforced Beam of Clear Span 7.39 m to carry an u.d.l of $24 \mathrm{kN} / \mathrm{m}$. Restrict the Overall depth to 550 mm . Design for flexure and Shear.

Table 19 Design Shear Strength of Concrete, $\tau_{s}, \mathrm{~N} / \mathrm{mm}^{2}$
(Clauses 40.2.1, 40.2.2, 40.3, 40.4, 40.5.3. 41.3.2, 41.3.3 and 41.4.3)

$100 \frac{h}{h d}$	Concrete Grade				
	M 15	M 20		M 25	
(1)	(2)	(3)		(4)	
≤ 0.15	0.28	0.28		0.29	
0.25	0.35	0.36		0.36	
0.50	0.46	0.48		0.49	
0.75	0.54	0.56		0.57	
1.00	0.60	0.62		0.64	
1.25	0.64	0.67		0.70	
1.50	0.68	0.72		0.74	
1.75	0.71	0.75		0.78	
2.00	0.71	0.79		0.82	
2.25	0.71	0.81		0.85	
2.50	0.71	0.82		0.88	
2.75	0.71	0.82		0.90	
3.00	0.71	0.82		0.92	
fy in $\mathrm{N} / \mathrm{mm}^{2}$		d'/de			
		0.05	0.1	0.15	0.2
	$5 \mathrm{~N} / \mathrm{mm}^{2}$	355	353	342	329
	($/ \mathrm{mm}^{2}$	424	412	395	370

Q4) a) Write Short Notes on any two of the Following drawing sketches wherever necessary
i) Piles - Need, Explain any two Types of Piles briefly
ii) Different Types of Deep Foundations.
iii) Reinforcement Detailing in a Central Stringer Beam Staircase with Cantilever Treads.
iv) Write down the assumptions in Rankine's theory of Earth Pressure b) Draw the Reinforcement Detail of the Slabs S1. -S2-S1 from the Schedule given below

Slab Schedule

Slab	Depth	Steel along shorter span		Steel Along Longer Span	Remark
		Bottom Reinforcement	Top Reinforcement at Supports		
S1	120	$10 \Phi @ 200 \mathrm{c} / \mathrm{c}$	$10 \Phi @ 180 \mathrm{c} / \mathrm{c}$	$8 \Phi @ 325 \mathrm{c} / \mathrm{c}$	
S2	120	$10 \Phi @ 250 \mathrm{c} / \mathrm{c}$	$10 \Phi @ 180 \mathrm{c} / \mathrm{c}$	$8 \Phi @ 325 \mathrm{c} / \mathrm{c}$	One way Continuous
					One way Continuous

SECTION - II (SOLVE ANY THREE)

Q5) An U.C.R Masonry wall is to be provided to retain Earth on its Vertical Face. Density of Retained Earth $=16 \mathrm{kN} / \mathrm{m}^{3}$, Density of Masonary $=25 \mathrm{kN} / \mathrm{m}^{3}$ Top Width of Wall $=1.2 \mathrm{~m}$, Take Bottom Width of wall $=0.6 \mathrm{~h}$ Height of Wall $=4.8 \mathrm{~m}=\mathrm{h}$, Angle of Repose $=30^{\circ}$, Coefficient of Friction $\mu=0.6$, S.B.C of Soil $=225 \mathrm{kN} / \mathrm{m}^{2}$. Check the Stability of the wall with respect to Overturning and Sliding and Calculate Maximum and Minimum Pressure at Base

Q6) a) Explain the Dis-Advantages of Pre- Stressed Constructions over conventional R.C.C Construction.
b) A Pre- stressed beam of size 300×700 is simple supported on a span of 11 m . It carries an udl of $35 \mathrm{kN} / \mathrm{m}$ over its entire span inclusive of its self-weight. It is pre-stressed by tendons supplying 2200 kN force which are placed at 125 mm below the neutral axis. Calculate the extreme fiber stresses at end span (support) and at mid span.

Q7) a) Two Columns of size 300×300 and 400×400 spaced 2.0 m apart rest in a Soil of S.B.C $200 \mathrm{kN} / \mathrm{m}^{2}$. They carry loads of 600 kN and 1100 kN respectively. Design the combined footing in plan only. Take Length of the footing as 2.0 times the width.
b) Write a Short Note on Raft Foundation - Need and Advantages

Q8) Find the Load acting on column C 1 per floor. Assume Load on B 2 to be $38 \mathrm{kN} / \mathrm{m}$ and Load on B3 to be $20 \mathrm{kN} / \mathrm{m}$. Calculate Load on every Floor considering Parking +5 Floors. Design Column on First Floor using 3\% steel and take one side as 230 . Keep the length the same and change the width and design Column on Parking Floor. Draw Sketch of reinforcement of both the columns.

Q9) Design the Isolated Pad Footing of a Column 250×650 to carry a load of 1600 kN in a Soil of S.B.C $240 \mathrm{KN} / \mathrm{m}^{2}$. Check for Single Shear. Draw Sketch of Reinforcement.

crcescr

