Total No. of Questions: 8]	Total	No.	of	Questions	:	8]
-----------------------------------	--------------	-----	----	-----------	---	----

SEAT No.:	

[Total No. of Pages: 4

P268 [5257]-4002

S.Y. B.Arch. (End Semester)

THEORY OF STRUCTURES - IV (2015 Pattern)

Time: 3 Hours [Max. Marks: 70

Instructions to the candidates:

- 1) Q.nos. 1 & 5 are compulsory. Solve any two questions from 2, 3, & 4 and two questions from 6, 7, & 8.
- 2) Take M20 grade concrete & Fe500 grade steel.
- 3) Assume suitable data, if required. Mention the assumption.
- 4) Use of Non-Programmable Scientific calculator is allowed.

SECTION - I

Q1) W.r.t. the framing plan in the figure below, design the slab S1. [15] Assume all beams as 230 mm thk. Take floor finish load = $1.25 \text{ kN/m}^2 \& \text{live load} = 4 \text{ kN/m}^2$.

Summarize the design by Schedule & Sketch.

P.T.O.

- **Q2)** A simply supported RCC beam of size 230×450 , M20 grade concrete, is reinforced with 2 nos. $20 \, \overline{\Phi}$ Fe500 bars in the tensile zone. Determine, [10]
 - a) Moment of resistance of the beam.
 - b) The safe UDL, the beam can carry for an effective simply supported span of 4.10 m.
- Q3) Design a short RCC rectangular column 230 wide, to take a load of 650 kN.Take 1% steel. Make the Schedule & sketch.[10]
- **Q4)** Answer the following:

[10]

- a) IS 456 provisions of minimum reinforcement in slabs and beams.
- b) Short note on bond stress & development length.
- c) Explain with sketches the function of distribution steel in slabs.

SECTION - II

Q5) W.r.t. the framing plan & section in the figure below, design the highlighted beam B1. Assume all slabs to be 130 mm thk. Take floor finish load & live load on slabs as 1.25 kN/m² and 4 kN/m², respectively. Take the beam & columns as 230 mm thk. Take density of brick masonry as 19 kN/m³.

Also design the shear stirrups. Refer the Table 19 below as per IS 456 for the same. Summarize the design by Schedule & Sketches. [15]

FRAMING PLAN

Table 19: Design Shear strength of Concrete

100 As/bd (%)	τc (N/mm²)
0.15	0.28
0.25	0.36
0.50	0.48
0.75	0.56
1.00	0.62
1.25	0.67
1.50	0.72

Q6) Design a cantilever balcony slab 1.25 m. wide for a bungalow. Take the beam as 230 thk. [10]

Take live load for the balcony = 3 kN/m^2 . Conclude with Schedule & sketch.

OR

Draw proportionately, a plan & section as per the following schedule. Show all dimensions and nomenclature. Given - Slab dimensions - $7.5 \text{ m} \times 3.6 \text{ m}$, Beam widths - 230 mm

Slab	Depth	Steel @ shorter span	Steel @ longer span	Remark
S4	145	10 क @ 125 c/c	8 Ф @ 285 c/c	1 way slab

Q7) Answer any 3 of the following:

[10]

- a) Explain Under-reinforced & over-reinforced sections.
- b) Explain compressive strength & characteristic strength of concrete.
- c) Explain Limit state of cracking and how is it taken care of.
- d) Explain Limit state of deflection and how is it taken care of.

Q8) Design a timber beam in Indian Oak to take a load of 27 kN/m inclusive of its own weight for a simply supported clear span of 4.6 m. The beam is supported on 230 thk. bk. walls. [10]

Take d = 3b, Permissible bending stress - 12.16 N/mm², Permissible shear stress - 1.67 N/mm², Check for shear only. Check for deflection and form factor not required.

