Total No.	of Questions	:	8]
-----------	--------------	---	----

SEAT No.:	
-----------	--

[Total No. of Pages : 3

P1337

[5157] -4002 S. Y. B. Arch. (End Semester) THEORY OF STRUCTURES - IV (2015 Pattern)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Q.nos. 1 & 5 are compulsory. Solve any two questions from 2, 3 & 4 and two questions from 6, 7 & 8.
- 2) Take M20 grade concrete & Fe500 grade steel.
- 3) Assume suitable data, if required. Mention the assumption.
- 4) Use of Non-Programmable Scientific calculator is allowed.

SECTION - I

Q1) W.r.t. the framing plan in the figure below, design the slab S1. Assume all beams as 230 mm thk. Take floor finish load =1.25kN/m² & live load = 4kN/m² Summarize the design by schedule & sketch.

- **Q2)** A simply supported RCC beam of size 230×600, M20 grade concrete, is reinforced with 3 nos.16 **T** Fe500 bars in the tensile zone. Determine,
 - a) Moment of resistance of the beam.
 - b) The safe UDL, the beam can carry for an effective simply supported span of 4.43m. [10]

P.T.O

Q3) Design a short RCC rectangular column 300 wide, to take a load of 1100 kN.Take 1.5% steel. Make the Schedule & sketch.

Q4) Answer the following

[10]

- a) Short note on bond stress & development length.
- b) Terminology in a typical RCC flexural section.
- c) IS 456 provisions for minimum reinforcement in beams and slabs.

SECTION - II

Q5) W.r.t. the framing plan & section in the figure below, design the highlighted beam B1. Assume all slabs to be 130 mm thk. Take floor finish load & live load on slabs as 1.25 kN/m² and 4kN/m², respectively. Take the beam & columns as 230 mm thk. Take density of brick masonry as 19 kN/m³. [15] Also design the shear stirrups. Refer the Table 19 below as per IS 456 for the same. Summarize the design by Schedule & sketches.

Table 19: Design Shear strength of Concrete

100 As / bd (%)	Tc (N/mm²)		
0.15	0.28		
0.25	0.36		
0.50	0.48		
0.75	0.56		
1.00	0.62		
1.25	0.67		
1.50	0.72		

Q6) Design a cantilever balcony slab 1.2 m. wide for a bungalow. Take the beam as 230 thk. Take live load for the balcony = 3 kN/m². Conclude with Schedule & sketch.

OR

Draw proportionately, a plan & section as per the following schedule. Show all dimensions and nomenclature. Given-Slab dimensions - 7.5m ×4.0m, Beam widths -250 mm.

Slab	Depth	Steel @ shorter	Steel @ longer	Remark
		span	span	
S4	160	10 क @110 c/c	8 ф @260 c/c	1way slab

Q7) Answer any 3 of the following.

[10]

- a) Explain limit state of deflection and how is it taken care of.
- b) Explain compressive strength & characteristic strength of concrete.
- c) Explain Limit state of cracking and how is it taken care of.
- d) Explain Under-reinforced & over-reinforced sections.
- Q8) Design a timber beam in Indian Oak to take a load of 25kN/m inclusive of its own weight for a simply supported clear span of 4.5 m. The beam is supported on 230 thk. bk. walls. Take d = 3b, Permissible bending stress -12.16 N/mm², Permissible shear stress 1.67 N/mm², Check for shear only. Check for deflection and form factor not required.
 [10]