Total No.	of Questions	:	8]
-----------	--------------	---	----

SEAT No.:	
~	

P1334 [Total No. of Pages : 3

[5157] -3002

Second Year B. Arch (End-Semester) THEORY OF STRUCTURES -III (2015 Pattern)

Time: 3 Hours]

[Maximum Marks: 70

Instructions to the candidates:

- 1) Q.Nos.1 & 5 are compulsory. Solve any two questions from 2,3 & 4 and two from 6, 7 & 8.
- 2) Assume steel of grade Fe410/E250. Yield stress = $250N/mm^2$.
- 3) Take permissible bending stress in steel as 165 N/mm² and permissible shear stress as 100N/mm².
- 4) Take permissible tensile stress in steel as 150 N/mm².
- 5) Take permissible bearing stress for bolt = $300N/mm^2$ and permissible shear stress for bolt as $100 N/mm^2$.
- 6) Take permissible stress in weld = $108N/mm^2$.
- 7) Use of Non-programmable Scientific calculator is allowed.
- 8) Allow use of steel tables.

SECTION -I

Q1) As per the sketch below,

Given, RCC Slabs S1, S2, S3 & S4 -130mm.thk., Floor finish load =1.25 kN/m^2 , Live load =3 kN/m^2 .

a) Calculate load on girder B3.

[5]

b) Design girder B3.

[10]

Assume permissible bending stress as 165 N/mm² and permissible shear stress as 100 N/mm². Check for shear and deflection. Take allowable deflection as Span /300.

P.T.O

Q2) a) What are the assumptions of Euler's theory?

[3]

- b) Design a Stanchion for an effective length (L_e) 5m to take a load of 800kN.
- Q3) Answer any three of the following.

[10]

- a) Write a short note on factor of safety and permissible stresses.
- b) Discuss the criteria w.r.t. load bearing structures-. i) opening in wallsii) Wall thickness
- c) Draw the BMD only for a 3 equal span continuous beam with a full UDL of w kN/m.
- d) Write a short note on snow load.
- e) Wind loads & reversal of stresses.
- **Q4)** a) A fixed beam of span 9 m. carries an UDL of 20 kN/m and a central point load of 25 kN.Solve the fixed beam. [8]
 - b) Write the formula for maximum deflection for a fixed with full UDL.[2]

SECTION -II

- **Q5)** For the sketch below, assuming permissible tensile stress as 150 N/mm².
 - a) Design the member AF for a tensile force of 125 kN.

[9]

b) Design the bolted connection also.

[6]

Take permissible bearing stress for bolt =300 N/mm² and Permissible shear stress for bolt as 100 N/mm².

[5157] -3002

Q6)	a)	An ISA 80×80×8 is used as compression strut 2.5 m long to carry a loa of 100kN. It is welded to a gusset plate. Design the welded connection Take permissible stress in weld as 108 N/mm ² . [6]				
	b)	Expl	lain any two of the following.	4]		
		i)	Types of welded joints			
		ii)	Disadvantages of riveted connections.			
		iii)	Disadvantages of welded connections.			
<i>Q7)</i> Answer any three of the following.						
	a)	How is load transferred across lintels? State any 3 cases.				
	b)	Disa	dvantages of steel structures.			
	c)	What are different rolled steel sections used in building construction Explain with applications of each.				
	d)	Common steel structures.				
	e)	Write a short note on two hinged and three hinged arch.				
Q8)	a)	A Hollow steel column with outer diameter 320mm & thickness 10 mm is 4.5m high. If it is fixed at one end & hinged at the other, determine the crippling load, it can take. [6]				
		Given, $E=2\times10^5 \text{ N/mm}^2$				
	b)	Expl	lain shortly any 2 of the following:	4]		
		i)	Requirement of connections in steel structures.			
		ii)	Seismic load			
		iii)	Live loads			
[51:	571 -	300	2 - 3 -			