Total No. of	Questions:	81
--------------	-------------------	----

SEAT No.:	
-----------	--

P265

[Total No. of Pages: 3

[5257]-3002

S.Y. B.Arch. (Semester - III)

THEORY OF STRUCTURES - III (Backlog) (2015 Pattern)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Q. nos. 1 & 5 are compulsory. Solve any two questions from 2,3 & 4 and two from 6,7 & 8.
- 2) Assume Steel of grade Fe410 / E250. Yield stress = 250 N/mm².
- 3) Take permissible bending stress in steel as 165 N/mm² and permissible shear stress as 100 N/mm².
- 4) Take permissible tensile stress in steel as 150 N/mm².
- 5) Take permissible bearing stress for bolt = 300 N/mm^2 and permissible shear stress for bolt as 100 N/mm^2 .
- 6) Take permissible Stress in weld = 108 N/mm^2 .
- 7) Use of Non-Programmable Scientific calculator & steel tables is allowed.

SECTION - I

Q1) As per the sketch below,

Given, RCC Slabs S1, S2, S3 & S4 - 140 mm. thk., Floor finish load = 1.25 kN/m^2 , Live load = 3 kN/m^2 . Wall thickness - 230 mm

a) Calculate load on girder B2.

[5]

b) Design girder B2.

[10]

Assume permissible bending stress as 165 N/mm² and permissible shear stress as 100 N/mm². Check for shear and deflection. Take allowable deflection as Span/300.

P.T.O.

Q2)	a)	What is Slenderness ratio? Explain shortly with a sketch. [2]
	b)	Design a Stanchion for an effective height ($L_{\rm e}$) 4.2 m to take a load of 700 kN. [8]
Q3)	Wr	ite Short notes on any 3 of the following: [10]
	a)	Criteria for 1. Length of wall & 2. Openings in a load bearing structure.
	b)	Dead loads.
	c)	Live loads.
	d)	State the advantages & disadvantages of a continous beam.
	e)	Wind loads.
Q4)	a)	A fixed beam of span 8 m. carries an UDL of 15 kN/m and a central point load of 20 kN. Solve the fixed beam. [7]
	b)	What are the advantages of a fixed beam? [3]
		SECTION - II
Q5)	a)	Design a steel tension member 1.5 m. long to take a force of 90 kN in a truss. [9]
	b)	Also design the bolted connection. [6]
		Assume permissible tensile stress in steel as 150 N/mm ²
		Take permissible bearing stress in bolt = 300 N/mm^2 and permissible shear stress in bolt as 100 N/mm^2 .
Q6)	a)	An ISA $75 \times 75 \times 8$ is used as compression strut 2.1 m long to carry a load of 120 kN. It is to be welded to a gusset plate. Design the welded connection. [6]
		Take permissible stress in weld as 108 N/mm ² .

- b) Explain any 2 of the following:i) Advantages of bolted connections.
 - ii) Disadvantages of riveted connections.
 - iii) Advantages of welded connections.
- **Q7)** Write Short notes on any 3 of the following: [10]
 - a) Basic principles of load transfer in arches.
 - b) What steel sections are recommended for 1. Stanchion, 2. Girder & 3. Strut?
 - c) Common steel structures.
 - d) Advantages of steel structures.
 - e) Disadvantages of steel structures.
- **Q8)** a) ISHB 350 @ 67.4 kg/m is used as a stanchion, 3.8 m. high, with both ends fixed.

Determine its Crippling load using Euler's equation. Given, $E = 2 \times 10^5 \text{ N/mm}^2$.

b) Explain shortly any 2 of the following:

[4]

- i) Why are connections required in a steel structure?
- ii) Seismic load.
- iii) State any 3 cases of load transfer across lintels.

