Total No. of Questions: 8]

P2643

SEAT No.:

[Total No. of Pages: 3

[4962]-2002

F.Y.B.Arch (Semester - II) THEORY OF STRUCTURES - II

(2015 Pattern)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:-

- 1) Q.Nos. 1 & 5 are compulsory
- 2) Solve any 2 questions out of the remaining 3 from each section. Total solve 3 questions from each section
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data wherever required. Mention the assumption.
- 5) Use of Non-programmable Scientific calculator is allowed.

SECTION - I

Q1) a) For the truss given in figure below, determine the forces in magnitude & type (tension or compression) in the members, AC, AH, CH, CD & CJ. Use appropriate method for analyzing.[12]

b) Write 3 assumptions for analysis of perfect frames.

[3]

Q2) a) For the member, as per figure below,

[7]

- i) Calculate stresses in each part of the member.
- ii) Calculate total change in length. Take $E= 2 \times 10^5 \text{ N/mm}^2$

- b) Explain with examples, elastic, plastic and brittle materials. [3]
- Q3) a) State the assumptions of theory of simple bending. [4]
 - b) A simply supported beam of cross section 230 × 450 carries an UDL of 6 kN/m over the entire span of 5 m. It also carries a central point load of 10 kN. Calculate maximum bending stress in compression and tension and sketch the bending stress diagram. [6]
- Q4) a) Compare with sketch, the bending stress diagram and shear stress diagram of a rectangular cross section. Mention key values.[4]
 - b) Define with units [4]
 - i) Modulus of elasticity
 - ii) Poisson's ratio
 - c) Define Yield stress & Permissible stress. [2]

[4962]-2002

SECTION - II

Q5) a) A column carries an eccentric load of 600 kN with eccentricities shown as per figure below. Calculate stresses at all corners of the column. Also sketch the stress diagram.[12]

Note: All dimensions in mm.

b) Explain with sketch, the Middle Third rule.

[3]

- Q6) a) Sketch a typical cantilever beam with UDL (w) over the entire span.Write the equations for maximum slope and deflection. [3]
 - b) A simply supported beam of cross section 230×600 carries an UDL of 8 kN/m over the entire span of 6 m. Calculate maximum deflection only. Take $E = 0.15 \times 10^5 \text{ N/mm}^2$ [7]
- Q7) a) A simply supported beam of cross section 230 x 450 carries an UDL of 7 kN/m over the entire span of 5 m. It also carries a central point load of 9 kN. Calculate maximum shear stress and sketch the shear stress diagram.
 [6]
 - b) Sketch proportionately, typical shear stress diagrams for a T, L & I section. Show max. values. [4]
- **Q8**) a) Explain with sketches, perfect frame, deficient frame and redundant frame.[6]
 - b) Explain with sketches, how is Middle third rule applied in eccentrically loaded foundations. [4]

