SEAT No.:

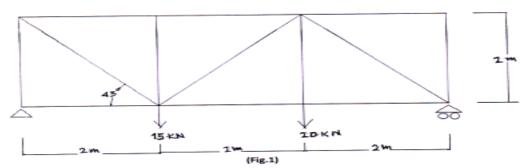
P1332

[Total No. of Pages: 3

[5157] -2002

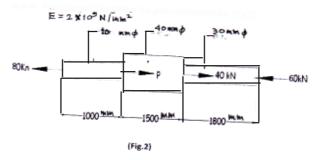
First Year B. Architecture (End Semester) THEORY OF STRUCTURES - II (2015 Pattern)

Time: 3 Hours]


[Maximum Marks: 70

Instructions to the candidates:

- 1) Q.1 and Q.5 are compulsory. Solve any two from Q2/3/4 from Section I and any two from Q.6/7/8 from Section II
- 2) Use of scientific calculator is allowed.
- 3) Figures to the right indicates full marks.
- 4) Assume suitable data if any.
- 5) Use separate answer booklet to write Section-I and Section II.


SECTION - I

Q1) Analyse the given truss and tabulate forces with their nature in the member.Use method of joint/graphical/section. (Fig1) [15]

Solve any two from the following.

Q2) a) Find change in length for the given compound bar (Fig 2) [7]

b) State Hook's Law

[3]

P.T.O

Q3) a)	A beam of cross section 300×500 mm simply supported carries a point load of 3kN/m over entire span of 5m. Calculate bending stresses at tension and compression extreme fibres. Also find stress at a distance of 75mm from top and 100mm from bottom and draw bending stress distribution diagram. [7]
b)	Explain types of stresses. [3]
Q4) Define any five: [10]	
a)	Poisson's Ratio
b)	Stress
c)	Strain
d)	Modulus of elasticity
e)	Bulk Modulus
f)	Shear Modulus
SECTION - II	
Q5) a)	A chimney of 15 m height has inside cross sectional dimension 1.5m×1.5m surrounded by a brick masonry of 0.6 m on all four sides, density of brick masonry 19kN/m³.
	It is subjected to a wind pressure of 1.6kN/m ² . Calculate stresses at the four corners of the chimney. [12]
b)	Define neutral axis with suitable sketch. [3]
Q6) a)	Find slope and deflection for a simply supported beam with a point load of $5kN$ at a distance of 1m from left hand support and a point load of $10kN$ at a span of 3m from left hand support if entire span is 5m. Take $EI = 10^{14} \text{ Nmm}^2$. [8]
b)	Draw shear stress distribution diagram for L-section. [2]
Q7) a)	A rectangular beam section with dimension 250mm×300mm having span of 6m. It carries a UDL of 5kN/m over entire span. Find shear stresses at the necessary points and draw shear stress distribution diagram. [7]
b)	Write any three assumptions in theory of simple bending. [3]

[10]

- a) Write Flexural formula
- b) Shear stress distribution diagram for circle
- c) Bending stress distribution diagram for I-section
- d) Explain perfect frame
- e) Define eccentricity
- f) Concept of middle third rule