Total No	o. of Qu	estions	:	6]
----------	----------	---------	---	------------

SEAT No.:	
-----------	--

P1566

[Total No. of Pages: 3

[4962] - 1002 F.Y. B.Arch (Semester - I) THEORY OF STRUCTURES - I (2015 Pattern)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates :-

- 1) Que. 1 is compulsory.
- 2) Attempt any four out of Q.2, 3, 4, 5, 6.
- 3) Use of scientific calculator is allowed.
- 4) Numbers to the right indicate full marks.
- 5) Draw neat sketches wherever required.
- Q1) a) A cantilever beam having length 1 is subjected to uniformly distributed load 'w' over the entire length. Show support reactions and draw shear force and bending moment diagram for the same.[5]
 - b) Draw shear force and bending moment diagram for the beam shown. Find maximum bending moment for the same. (Fig 1) [17]

Q2) a) Find moment of Inertia for the given sections with respect to axis a - a and b - b (Fig - 2)[6]

P.T.O.

b) Find resultant of the given force system analytically. Also find the equilibrant force for given force system. (Fig - 3) [6]

Q3) a) Find centre of gravity for the given lamina with respect to point 'o'.

Fig - 4

a) Explain with a diagram

[6]

[6]

- i) Cantilever beam
- ii) Overhang beam
- **Q4)** a) State and explain parallel axis theorem.

[4]

b) Find moment of inertia of the given section with respect to its centroidal X-X and Y-Y axis. (Fig 5). [8]

Fig - 5

Q5) a) Find the loads acting on given beam, where unit weight of brick (density) is 18 KN/m³, and unit weight (density) of R.C.C. is 25 KN/m³. Also find reactions for the same.(Fig 6)
[6]

Fig - 6

b) Explain the following:-

[6]

- i) Conditions of equilibrium for coplanar nonconcurrent force system.
- ii) Lami's theorem.
- Q6) a) What is shear force diagram? What is point of contra-shear? Explain the importance of point of contra-shear.[6]
 - b) Find reactions at support 'A' and 'B' the given beam. (Fig 7) [6]

Fig - 7

