[Total No. of Printed Pages—4

Seat	
No.	

[5057]-2033

S.E. (Electrical) (I Sem.) EXAMINATION, 2016 MATERIAL SCIENCE

(2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.

Physical Constants:—

- (1) Angstrom Unit (AU) = 1×10^{-10} metres.
- (2) Boltzmann's Constant (k) = 1.380×10^{-23} joule.degree-1.
- (3) Charge on Electron (e) = 1.601×10^{-19} coulomb.
- (4) Mass of Electron $(m) = 9.107 \times 10^{-31}$ kg.
- (5) Electron volt (eV) = 1.602×10^{-19} joules.
- (6) Mass of Proton $(m_p) = 1.627 \times 10^{-27}$ kg.
- (7) Velocity of light (c) = 2.998×10^8 m/sec.
- (8) Dielectric Constant of free space $(\epsilon_0) = 8.854 \times 10^{-12}$ F/m.
- (9) Permeability of free space $(\mu_0) = 4\pi \times 10^{-7}$ H/m.
- (10) Debye Unit = 3.33×10^{-30} coulomb.metre.
- 1. (a) Derive Clausius-Mossotti relation as applied to dielectric materials in static field. State clearly the assumptions made. [6]

Z.	(a)	write short note on fibre optics with its principle of working.
		State clearly materials used for fibre optics. [6]
	(<i>b</i>)	Explain various factors which affect breakdown in liquid
		insulating materials. [6]
3.	(<i>a</i>)	Define with units: [6]
		(i) Magnetic dipole moment
		(ii) Magnetization
		(iii) Magnetic susceptibility.
	(<i>b</i>)	A filament of a 230 V lamp is to be drawn from a wire of
		having a diameter of 0.025 mm and resistivity at 25°C is
		5.65×10^{-6} Ω -cm. If the resistance temperature coefficient
		at 25°C is 5 \times 10 ⁻³ /°C. Calculate the length of the filament
		to dissipate 40 W at filament temperature of at 3000°C. [6]
		Or
4.	(a)	Differentiate between hard and soft magnetic materials. [6]
[5057]-2033		2

State the properties and applications of:

Or

(*b*)

(i)

(ii)

Ceramics

Transformer oil.

[6]

	Brass. [6]
5. (a)	Describe with neat diagrams: [8]
	(i) Nano wires
	(ii) Carbon clusters.
<i>(b)</i>	What are different types of batteries used in electric
	vehicles? Write their properties. [5]
	Or
6. (a)	Explain with neat diagram — Single Electron Transistor
	(SET). [7]
<i>(b)</i>	Explain with neat diagram, chemical reaction and applications
	of:
	(i) Lead acid battery
	(ii) Nickel Cadmium Battery.
7. (a)	Explain the method of finding dielectric strength of air
	using sphere gap voltmeter with a neat diagram as per
	IS 2584. [7]
<i>(b)</i>	With neat sketch, explain how flux density is measured with
	the help of Gauss-meter. [6]
[5057]-203	3 P.T.O.

Describe properties and applications of Nichrome and

(*b*)

- 8. (a) Explain the step by step method of finding dielectric strength of transformer oil with a neat diagram as per IS 6798.
 - (b) With neat circuit diagram and phasor diagram, explain measurement of dielectric loss angle (tan δ) by Schering Bridge as per IS 13585-1994.