Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[5056]-12

F.E. EXAMINATION, 2016

ENGINEERING PHYSICS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

N.B. :— (i) Figures to the right indicate full marks.

- (ii) Assume suitable data, if necessary.
- (iii) Neat diagrams must be drawn wherever necessary.
- (iv) Use of Non-Programmable calculator is allowed.

Physical Constants:

Avogadro's number = 6.023×10^{23} gms/mole Charge on electron (e) = 1.6×10^{-19} C Planck's constant (h) = 6.63×10^{-34} J-sec.

Mass of electron (m_e) = 9.1 × 10⁻³¹ kg.

Velocity of light (c) = 3×10^8 m/sec.

- (a) Derive expression for path difference in reflected light and derive the conditions for constructive and destructive interference for a film of uniform thickness.
 - (b) Explain any one application of ultrasonic waves. [3]

(c)	The average reverberation time of a hall is 1.5 sec and the area of the interior surface is 3340 m^2 . If the volume of the hall is 13000 m^3 , find the absorption coefficient. [3]	
Or		
(a)	Explain magneto-striction effect. Explain how magneto-striction oscillator is used to produce ultrasonic waves with the help of neat circuit diagram. [6]	
<i>(b)</i>	Explain an application of interference Antireflection coating. [3]	
(c)	A plane transmission grating has 5000 lines/cm. Find out the highest order spectrum observed if incident light has $\lambda = 6000 \text{ Å}. \tag{3}$	
(a)	What is Double refraction ? Explain Huygens's theory of double refraction. [6]	
(<i>b</i>)	What is Holography ? Explain the process of hologram recording. [3]	
(c)	Calculate the mobility of charge carriers in doped silicon whose conductivity is $100/\Omega$ -m and the Hall coefficient is 3.6×10^{-4} m ³ /C.	
Or		
(a)	Derive an expression for conductivity in intrinsic and extrinsic Semiconductors. [6]	
<i>(b)</i>	Define the following: [3]	
	(1) Stimulated Emission	
	(2) Meta-stable state	
	(3) Pumping.	

2.

3.

4.

- (c) Plane polarized light passes through a positive double refracting crystal of thickness 40 μm and emerges out as circularly polarized light. If the birefringence of the crystal is 4 × 10⁻⁵, find the wavelength of the incident light.
- (a) Derive an expression for energy of a particle trapped in an infinite potential well.
 - (b) Define phase velocity and group velocity. Derive the relation between them. [4]
 - (c) An electron beam is accelerated from rest through a potential difference of 200 V. Calculate the associated wavelength. [3]

Or

- (a) What is De-Broglie's hypothesis of matter waves. Show that the De-Broglie's wavelength of a charged particle is inversely proportional to the square root of the accelerating potential.
 - (b) Write down the conditions which are to be satisfied by well behaved wave function. [4]
 - (c) Calculate the energy required to excite the electron from its ground state to fourth excited state in a rigid box of length 0.1 nm.

[5056]-12 3 P.T.O.

What is superconductivity? Explain the Meissner effect in 7. (*a*) superconductors. [6] Explain the following properties of Nano-particles: $\lceil 4 \rceil$ (b) (*i*) Magnetic property (ii)Mechanical property. (c) Explain the applications of nano particles in medical and automobile field. [3] OrExplain the synthesis of Nano particles by using mechanical 8. (a) method. [6] Explain zero electrical resistance property and isotope effect (*b*) in superconductor. [4]Explain any one application of superconductors in brief. [3] (c)