Total No. of Questions-6]

Seat	
No.	

[5056]-19

Maximum Marks : 50

F.E. (Common) EXAMINATION, 2016 ENGINEERING MECHANICS

(2015 PATTERN)

Time : Two Hours

N.B. :- (i) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6.

- (ii) Neat diagram must be drawn wherever necessary.
- (*iii*) Figures to the right indicate full marks.
- (iv) Assume suitable data, if necessary and clearly state.
- (v) Use of cell phone is prohibited in the examination hall.
- (vi) Use of electronic pocket calculator is allowed.
- (a) The resultant of two forces P and Q is 1400 N vertical. Determine the force Q and the corresponding angle θ for the system of forces as shown in Fig. 1a. [4]

P.T.O.

(b) The system shown in Fig. 1b is initially at rest. Neglecting axle friction and mass of pulley, determine the acceleration of block. [4]

- (c) A cricket ball shot by a batsman from a height of 2.0 m at an angle of 30° with the horizontal with a velocity of 20 m/s is caught by a fielder at a height of 0.8 m from the ground. Determine the distance between the batsman and fielder. [4]
- (d) A ball has a mass of 30 kg and is thrown upward with a speed of 15 m/s. Determine the time to attain maximum height using impulse momentum principle. Also find the maximum height.

2. (a) Determine the y coordinate of centroid of the shaded area as shown in Fig. 2a. [4]

(b) If the crest of the hill has a radius of curvature $\rho = 60$ m, determine the maximum constant speed at which the car can travel over it without leaving the surface of the road. The car has a weight of 17.5 kN. (Refer Fig. 2b). [4]

Fig. 2 b

(c) A particle moves along a straight line with an acceleration $a = (4t^3 - 2t)$, where a is in m/s² and t is in s. When t = 0, the particle is at 2 m to the left of origin and when t = 2s the particle is at 20 m to left of origin. Determine the position of particle at t = 4s. [4]

3

[5056]-19

- (d) A woman having a mass of 70 kg stands in an elevator which has a downward acceleration of 4 m/s² starting from rest. Determine work done by her weight and the work of the normal force which the floor exerts on her when the elevator descends 6 m. [4]
- 3. (a) Two spheres A and B of diameter 80 mm and 120 mm respectively are held in equilibrium by separate strings as shown in Fig. 3a. Sphere B rests against vertical wall. If masses of spheres A and B are 10 kg and 20 kg, determine the tension in the string and reactions at point of contact. [6]

(b) Four parallel bolting forces act on the rim of the circular cover plate as shown in Fig. 3b. If the resultant force 750 N is passing through (0.15 m, 0.1 m) from the origin O, determine

the magnitude of forces P_1 and P_2 .

Fig. 3 b

(c) Determine the support reaction for the beam loaded and supported as shown in Fig. 3c.

4. (a) Three cables are joined at the junction C as shown in Fig. 4a. Determine the tension in cable AC and BC caused by the weight of the 30 kg cylinder. [6]

Fig. 4 a

[6]

(b) The square steel plate has a mass of 1800 kg with mass centerG as shown in Fig. 4b. Determine the tension in each cable so that the plate remains horizontal. [6]

(c) Determine the component of reaction at hinge A and tensionin the cable BC as shown in Fig. 4c. [5]

5. (a) A block of mass 10 kg rests on an inclined plane as shown in Fig. 5a. If the coefficient of static friction between the block and plane is $\mu_s = 0.25$, determine the maximum force P to maintain equilibrium. [6]

Fig. 5 a

(b) Determine the components of reactions at supports A and B for the frame loaded and supported as shown in Fig. 5b.
[6]

(c) The 15 m ladder has a uniform weight of 80 N. It rests against smooth vertical wall at B and horizontal floor at A. If the coefficient of static friction between ladder and floor at A is $\mu_s = 0.4$, determine the smallest angle θ with vertical wall at which the ladder will slip. [5]

Or

6. (a) The cable segment support the loading as shown in Fig. 6a.Determine the support reaction and maximum tension in segment of cable. [6]

Fig. 6 a

(b) A cable is passing over the disc of belt friction apparatus at a lap angle 180° as shown in Fig. 6b. If the weight of

block is 500 N, determine the range of force P to maintain equilibrium. [6]

(c) Determine the forces in the members of the truss loaded and supported as shown in the Fig. 6c. Tabulate the result with magnitude and nature of force in the members. [5]

