Programme Name/s	: Automation and Robotics/ Digital Electronics/ Electronics & Tele-communication Engg./ Electronics & Communication Engg./ Electronics Engineering/ Instrumentation & Control/ Industrial Electronics/ Instrumentation/ Medical Electronics/ Electronics & Computer Engg.
Programme Code	: AO/ DE/ EJ/ ET/ EX/ IC/ IE/ IS/ MU/ TE
Semester	: Second
Course Title	: BASIC ELECTRONICS
Course Code	: 312314

I. RATIONALE

Diploma engineers must deal with the various electronic components while maintaining various electronic equipment/systems. The use of basic electronics components and handling of various electronics systems will help them troubleshoot electronics equipment used in industry or in the consumer market etc. This course is developed to empower the students to apply their knowledge to solve broad electronic engineering application problems.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attend following industry identified competency through various teaching learning experiences: • Maintain electronic equipment/systems comprising of discrete electronic components.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Use relevant diode in electronics circuits.
- CO2 Use BJT in electronics circuits .
- CO3 Use of BJT as amplifier and switch ...
- CO4 Use FET and MOSFET in electronics circuits..
- CO5 Maintain DC regulated power supply.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	earı	ning	s Sche	eme					A	ssess	ment	: Sch	eme				
Course Code	Course Title	Abbr	Course Category/s	Co Hre	ctua onta s./W	ct eek		NLH	Credits	Paper Duration		The	ory			Т	n LL L tical	&	Base S	L	Total Marks
				CL	TL	LL				Duration	FA- TH		Tot	tal	FA-	PR	SA-	PR	SL		Marks
	1.1.1.1.1.1.1.1										Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	<i>.</i>
312314	BASIC ELECTRONICS	BEL	AEC	4		4	-	8	4	3	30	70	100	40	50	20	25@	10	1	1	175

Total IKS Hrs for Sem. : 0 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

Suggested **Theory Learning Outcomes** Learning content mapped with Theory Learning Sr.No Learning (TLO's)aligned to CO's. Outcomes (TLO's) and CO's. Pedagogies. **Unit - I Applications of Diode** 1.1 Different types of diodes and their materials: TLO 1.1 Describe working Construction, Symbol, working principle, applications, principle, characteristics, Forward and reverse biasing and V-I characteristics of and application of the given following diodes: P-N junction diode, Zener diode, LED, type of diode. Photo diode, Schottky diode, TLO 1.2 Describe the 1.2 Diode as rectifier: Types of Rectifiers, Half wave, working of given type of Chalk-Board Full wave (bridge rectifier and center tapped), circuit rectifier. Video 1 operation, Input- output waveform for voltage and TLO 1.3 Calculate ripple Demonstrations current, Parameters of rectifier: Average DC value, value factor, PIV, and efficiency of of current and voltage, ripple factor, ripple frequency, the given type of filter. PIV of diode, TUF, efficiency of rectifier. TLO 1.4 Describe the need 1.3 Types of Filters: Shunt capacitor, Series inductor, LC and working of rectifier and CLC filter. filter circuit. 1.4 Rectifier IC - KBU 808 IC pin diagram and application. TLO 2.1 Describe the working principle of the **Unit - II Bipolar Junction Transistor** given type of transistor. 2.1 Current operating device. TLO 2.2 Calculate current 2.2 Different types of transistors: PNP, NPN. gain for given configuration 2.3 Transistor configurations: CB, CE, CC Transistor of BJT characteristics (input, and output) in different transistor Chalk-Board 2 TLO 2.3 Compare configuration. Relation between alpha, beta, gama. Video configuration of transistors. Comparison between CB, CC and CE. Demonstrations TLO 2.4 Justify the need of 2.4 4 BJT biasing: Need of DC load Line, Operating biasing method. point, stabilization, thermal runaway, heat sink. Types of TLO 2.5 Describe the biasing: fixed biasing, base bias with emitter feedback, procedure to minimize the voltage divider. thermal runaway effect.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
3	TLO 3.1 Explain with sketches the working principle of the given type of amplifier. TLO 3.2 Describe working of Single Stage Transistor Amplifier. TLO 3.3 Calculate Voltage gain and bandwidth TLO 3.4 Describe working of Multistage amplifiers TLO 3.5 Describe working of BJT as a Switch	 Unit - III BJT Amplifiers 3.1 Classification of amplifier, BJT as an amplifier. 3.2 Single Stage Amplifier: Working , various currents (Ib, Ic,Ie), Voltage gain of CE amplifier (no derivations required), Frequency response of CE amplifier. Simple numericals. 3.3 Multistage amplifiers: General Multistage BJT based amplifiers 3.4 Types of BJT amplifier coupling: Circuit diagram, operation frequency response and applications of Direct coupled, RC coupled and transformer coupled. 3.5 BJT as a Switch 	Chalk-Board Video Demonstrations
4	TLO 4.1 Explain the working of given type of FET TLO 4.2 Explain the given type of FET biasing method. TLO 4.3 Describe working of FET Amplifier. TLO 4.4 Explain working of given type of MOSFET. TLO 4.5 Differentiate working principle of FET and MOSFET on the basis of the given characteristics of curve.	 Unit - IV Field Effect Transistor 4.1 Voltage operating device, Construction of JFET (N-channel and P- channel), symbol, working principle and characteristics (Drain and Transfer characteristics), different parameters of FET . FET applications 4.2 FET Biasing: Source self-bias, drain to source bias. 4.3 Common source FET amplifier. 4.4 MOSFET: Construction, working principle and characteristics of Enhancement and depletion MOSFET, MOSFET handling. 	Chalk-Board Video Demonstrations
5	TLO 5.1 Describe the working of the DC regulated power supply. TLO 5.2 Calculate output voltage of the given Zener voltage regulator circuit TLO 5.3 Describe the working of 78XX and 79XX fixed voltage IC Regulator. TLO 5.4 Describe the working of IC 723 as Low and High voltage regulator. TLO 5.5 Explain block diagram of Switch Mode Power supply.	 Unit - V Regulators and Power supply 5.1 Need of Regulated power supply . Basic block diagram of DC regulated power supply and function of each block 5.2 Load and Line regulation. 5.3 Zener diode voltage regulator 5.4 Fixed voltage IC Regulator: Three terminal Pin diagram, working and application of 78XX and 79xx series. 5.5 Variable voltage IC Regulator : IC 723 pin diagram , block diagram, working. Low voltage regulator, High voltage regulator 5.6 Switch Mode Power supply : Need of SMPS , block diagram and functions of blocks. 	Chalk-Board Site/Industry Visit

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles /	Number	Relevant
Learning Outcome (LLO)	No	Tutorial Titles	of hrs.	COs
LLO 1.1 Test PN junction Diode in forward bias. LLO 1.2 Plot the V-I characteristics of PN junction diode and determine cut in voltage. LLO 1.3 Calculate static and Dynamic resistance of diode.		* Test the performance of PN Junction diode	2	CO1

Course Code : 312314

Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles /	Number	
Learning Outcome (LLO)	No	Tutorial Titles	of hrs.	COs
LLO 2.1 Test Zener Diode in reverse				
bias.	2	* Test the performance of zener diode	2	CO1
LLO 2.2 Plot V-I characteristics of	2	Test the performance of zener diode	2	001
Zener Diode in reverse bias				
LLO 3.1 Build the circuit for Photo	1.1		N N	
Diode .				
LLO 3.2 Observe the change in current		* Check the performance of photo diode by		
with change in light intensity of the	3	varying the light intensity as well as the	2	CO1
source	11	distance of the light source.		
LLO 3.3 Plot distance VS Photo diode			1	
Current			_	·
LLO 4.1 Construct the circuit for Half				1.1
Wave Rectifier using PN junction				
Diode on.	4	* Construct and Test the half wave rectifier.	2	CO1
LLO 4.2 Plot Output Waveform for				
sinusoidal input.				
LLO 5.1 Build the circuit for Half				
Wave Rectifier with LC filter/ Pi filter				
using PN junction Diode.	5	* Build and Test the half wave rectifier with	2	CO1
LLO 5.2 Obsrve and draw input &		LC filter/ π filter	1.5	
output waveforms for sinusoidal wave			1.16	
			-	
LLO 6.1 Prepare the circuit for Full				
Wave Centre Tapped Rectifier using	(* Prepare and Test the full wave rectifier using	2	001
PN junction Diode.	6	two diodes.	2	CO1
LLO 6.2 Observe and draw input & output waveform for sinusoidal wave.				
LLO 7.1 Build the circuit for Full				
			1.111.2	
Wave Bridge Rectifier using PN	7	* Build and Test the full wave Bridge	2	CO1
junction Diode LLO 7.2 Observe and draw input &	· /	rectifier on bread board using two diodes.	2	COI
output waveform for sinusoidal wave.				
LLO 8.1 Build the circuit for Full				
Wave Rectifier using PN junction				
Diode with LC/Pi filter.	8	* Use LC/ π filter with full wave rectifier to	2	CO1
LLO 8.2 Calculate ripple factor for	0	measure ripple factor	2	01
given setup.				
LLO 9.1 Construct the circuit for full				
wave rectifier using IC KBU 808 with				
filter	9	* Construct and Test the full wave rectifier	2	CO1
LLO 9.2 Observe and draw input &		on bread board using IC KBU 808 with filter.	_	201
output waveform for sinusoidal wave.	2.5			
LLO 10.1 Build the circuit for 7				
Segment LED display FND 507/508.	10	Bulid and Test the performance parameters of		
LLO 10.2 Observe numeric output for	10	7 Segment LED display FND 507/508.	2	CO1
0-9				
LLO 11.1 Identify the terminals of the				
PNP and NPN transistor for TO-5, TO-				
220, TO-66	1.1	* Identify and select transistors using	2	000
LLO 11.2 Select of transistor for	11	datasheets	2	CO2
different max. voltage, current and				1.1
switching speed				1.1

Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles /	Number	Relevant
Learning Outcome (LLO)	No	Tutorial Titles	of hrs.	COs
LLO 12.1 Build the circuit for BJT in				
common base configuration.			1.1	
LLO 12.2 Plot input and output	12	Build and Test the performance of BJT	2	CO2
characteristics of common base		working in CB mode.	/ 23	C 6 - 1
configuration.				
LLO 13.1 Select the specific transistor				1 1
for different max. voltage, current and			$(x_i,y_i) \in \mathcal{X}$	1 . J.
switchingspeed	13	* Prepare and Test the performance of BJT	2	CO2
LLO 13.2 Prepare the circuit for BJT		working in CE mode	1 . Thu -	1.1
in common emitter configuration.	, * ÷		1	
LLO 14.1 Build the circuit for BJT	1.1		· · ·	
voltage divider bias circuit.	14	* Build and Test the BJT voltage divider bias	2	CO2
LLO 14.2 Locate Q point on Load line.		circuit for given input	1.7	002
LLO 15.1 Test the performance				
parameters of BJT as Switch	÷.,	* Construct and Test the performance		
LLO 15.2 Identify Cutoff and	15	parameters of BJT as Switch.	2	CO2
saturation regions		parameters of D31 as Switch.		
LLO 16.1 Build single stage Common		* Duild and Test the nonformance of single		
emitter amplifier.	16	* Build and Test the performance of single	2	CO3
LLO 16.2 Plot frequency response for		stage Low Power Common emitter amplifier		
Common emitter amplifier.				
LLO 17.1 Build the circuit for BJT				
common emitter (CE) amplifier using				
simulation software (like	1.5	Simulate and Test output waveform and		
SPICE/Multisim)	17	frequency response of single stage common	2	CO3
LLO 17.2 Plot Output Waveform for		emitter (CE) amplifier using simulation		
sinusoidal input.	1.1	software (like SPICE / Multisim)	N 1	
LLO 17.3 Plot frequncy response			6 N	
curve.				
LLO 18.1 Build the circuit for BJT two				
stage RC coupled common emitter	18	* Build and Test the performance of RC	2	CO3
(CE) amplifier.		coupled two stage amplifier.		000
LLO 18.2 Plot frequency response				
LLO 19.1 Build the circuit for FET in				1.1.1
common source configuration.	· ·	* Test the performance of FET drain	1.1.1.1	
LLO 19.2 Plot characteristics for drain	19	characteristics	2	CO4
to source voltage VDS verses drain				
current ID for different Values of VGS				
LLO 20.1 Build the circuit for FET in				
common source configuration.				
LLO 20.2 Plot characteristics for Gate	20	* Check the performance of FET transfer	2	CO4
to source voltage VGS verses drain	20	characteristics and calculate transconductance	2	04
current ID			1.5	
LLO 20.3 Calculate transconductance.				
LLO 21.1 Build the circuit for FET in				
common source configuration.		* Duild and Tast the median		P 1
LLO 21.2 Plot characteristics for Gate	21	* Build and Test the performance of common	2	CO4
to source voltage VGS verses drain		source FET amplifier		1.1
current ID				1.
LLO 22.1 Test the voltages				
&waveforms at various Test points of	22	Test the various blocks of regulated dc power	2	CO5
regulated dc power supply.		supply.	-	005
LLO 23.1 Identify the various faults in		* Find out faults at different stages of	1.1	
the Regulated DC power supply.	23	regulated dc power supply.	2	CO5
the Regulated DC power supply.		regulated de power supply.		

BASIC ELECTRONICS		Ca	ourse Code	e: 312314
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 24.1 Rectify the various faults in the Regulated DC power supply	24	* Trouble shoot given DC regulated power supply.	2	CO5
LLO 25.1 Construct Zener voltage regulator for given voltage. LLO 25.2 Calculate load and line regulation.	25	Construct and test the performance of Zener voltage regulator for given voltage.	2	CO5
LLO 26.1 Build the circuit for Positive voltage regulator using 78XX IC. LLO 26.2 Calculate load and line regulation.	26	* Build and Test the performance of Positive voltage regulator using 78XX , three terminal IC for given voltage.	2	CO5
LLO 27.1 Build the circuit for Negative voltage regulator using 78XX IC. LLO 27.2 Calculate load and line regulation.	27	Build and Test the performance of Negative voltage regulator using 79XX, three terminal IC for given voltage.	2	CO5
LLO 28.1 Construct the circuit for Dual voltage regulator using 78XX and 79XX IC. LLO 28.2 Calculate load and Line regulation.	28	* Construct and test the performance of Dual voltage regulator using 78XX and 79XX, three terminal IC for given voltage	2	CO5
LLO 29.1 Build LOW voltage regulator circuit using IC LM723 (2V- 7V). LLO 29.2 Calculate load and line regulation.	29	* Build and Test the performance of LOW voltage regulator using IC LM723 for given voltage.(2 V-7V)	2	CO5
LLO 30.1 Build High voltage regulator circuit using IC LM723 (7V-30V) LLO 30.2 Calculate load and line regulation.	30	Build and Test the performance of HIGH voltage regulator using IC LM723 for given voltage.(7V-30V)	2	CO5
Note : Out of above suggestive LLOs	-			

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

- Build Audio amplifier using BJT.
- Build the circuit for 3v battery charger.
- Build Clap switch Using transistor.
- Build audio amplifier using IC LM386.
- Build power supply using LM317.
- Prepare a chart of different types of Rectifiers showing their specifications and applications

Assignment

- Study working of OLED display.
- study of different Audio amplifier ICs (min 4).
- Study working of MOSFET as variable capacitor.
- select specific FET and Study datasheet for same.

Semester - 2, K Scheme

BASIC ELECTRONICS

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of
 microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Variable DC Power supply 0-30V with display for voltage and current, 2Amp SC protection	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,19,20,22,23,24
2	LT Spice /Lab view/H Spice /P Spice /HS Spice / Multisim/ Proteus/Octeva or any other relevant open source software	17
3	Computer System with advanced Configuration Hardware requirement as per selected software	17
4	DSO 30/50/100 MHz Frequency Digital read out USB interface	4,5,6,7,8,9,16,22
5	CRO 20/30/100 MHz Frequency Dual Channel External Trigger CT mode facility or any other better specifications	4,5,6,7,8,9,16,22,18
6	Function Generator 0-2 MHz with Sine, square and triangular output with variable frequency and amplitude	4,5,6,7,8,9,16,22,18
7	Analog multimeter & Digital multimeter	All
8	Different types of cables and connectors	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	Ι	Applications of Diode	CO1	12	4	4	6	14
2	II	Bipolar Junction Transistor	CO2	12	4	4	6	14
3	III	BJT Amplifiers	CO3	14	4	6	6	16
4	IV	Field Effect Transistor	CO4	12	4	6	4	14
5	V	Regulators and Power supply	CO5	10	4	4	4	12
		Grand Total	60	20	24	26	70	

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Progrssive test ,Assignment, Microproject , Termwork
- Each practical will be assessed considering - 60% weightage to process and 40% weightage to product
- Continuous assessment based on process and product related performance indicators, laboratory experience.

Summative Assessment (Assessment of Learning)

• End of Term Examination, Laboratory performance.

XI. SUGGESTED COS - POS MATRIX FORM MSBTE Approval Dt. 29/11/2023

Course Code : 312314

Course		Programme Outcomes (POs)									
Dis S ₁	and iscipline	PO-2 Problem		10018	SACIATY		PO-7 Life Long Learning	1	PSO- 2	PSO- 3	
CO1	2	2	1	1	1	1	1				
CO2	2	2	1	1	1	1	1				
CO3	2	2	1	1	1	1	1				
CO4	2	2	1	1	1	1	1				
CO5	2	2	2	1	2	2	2				

PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Mehta, V.K. Mehta, Rohit Mehta	Principles of Electronics	S.Chand New Delhi, edition-2008 ISBN-13: 978- 8121927833
2	Sedha, R.S.	A Text book of Applied Electronics	S.Chand (G/L) & Company Ltd; ISBN-13 978-8121904209
3	P.Ramesh Babu	Electronics Device and Circuits	Scitech Publications (India) Pvt Ltd ,ISBN-13 978-8183712156
4	Theraja B.L. (Author), Sedha R.S. (Author)	Principles of Electronic Devices and Circuits (Analog and Digital)	S Chand & Company,ISBN-13 978- 8121921992
5	B.L.Theraja	Basic Electronics (solid State)	S Chand;ISBN-13 978-8121925556
6	Albert P. Malvino, David J. Bates	Electronic Principles	McGraw Hill; ISBN-13 978- 9354602399
7	D. P. Kothari , I. J. Nagrath	Basic Electronics	McGraw Hill Education,ISBN-13 978- 9352606467
8	Roberrt L.Boylestead	Electronics Circuit and Circuit theory	Pearson Education India, ISBN-13 978-9332542600

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://nptel.ac.in/courses/122106025	Basic Electronics and Lab, IIT Madras Prof. T.S. Natarajan
2	https://archive.nptel.ac.in/courses/108/101/108101091/	Basic Electronics, IIT Bombay
3	4. https://learn.sparkfun.com/tutorials/transistors	Transistor basics
4	https://www.multisim.com/	online multisim live software/ free student evalution software download for limited time
5	https://alternativeto.net/software/multisim/	alernative softwares to multisim
6	https://www.labcenter.com/	demo version of Proteus software
7	https://learn.sparkfun.com/tutorials/transistors	Simulation
NI-4-		

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 29/11/2023

Semester - 2, K Scheme