24209

12223

3 Hours / 70 Marks

\square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

> Marks

1. Attempt any FIVE of the following: 10
a) If $f(x)=\log (\sin x)$, find $f\left(\frac{\pi}{2}\right)$
b) Define odd and even functions.
c) Differentiate with respect to $x: \log _{10}^{x}+\log _{10}^{10}+10^{x}+x^{10}$
d) Evaluate $\int \frac{d x}{3 x^{2}+4}$
e) Evaluate $\int x \cdot \log x d x$
f) Find area between the lines $y=2 x, x$-axis and the ordinates, $x=1$ and $x=3$.
g) Show that root of equation $x^{3}-9 x+1=0$ lies between 2 and 3.
2. Attempt any THREE of the following:
a) If $f(x)=\frac{x-4}{4 x-1}$ then show that $f[f(x)]=x$.
b) If $x^{2}+3 x y+y^{2}=11$ find $\frac{d y}{d x}$ at $(1,2)$.
c) If $y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right)$ and $x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)$ find $\frac{d y}{d x}$.
d) Find the maximum and minimum value of $x^{3}-9 x^{2}+24 x$.
3. Attempt any THREE of the following:
a) An open box is to be made out of a rectangular sheet of metal measuring $16 \mathrm{~cm} \times 10 \mathrm{~cm}$ by cutting off equal squares from the corners and turning up the sides. Find the side of the square if the volume of box is to be maximum.
b) If $e^{y}=y^{x}$ prove that $\frac{d y}{d x}=\frac{(\log y)^{2}}{\log y-1}$
c) If $y=\log (x \sin 2 x)$. Find $\frac{d y}{d x}$.
d) Evaluate $\int \frac{5^{\tan x}}{\cos ^{2} x} d x$
4. Attempt any THREE of the following:
a) Evaluate $\int \frac{d x}{3-2 x-x^{2}}$
b) Evaluate $\int \frac{d x}{5-\cos 2 x}$
c) Evaluate $\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+1\right)} d x$
d) Evaluate $\int(\log x)^{2} d x$
e) Evaluate $\int_{0}^{4} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4-x}} d x$
5. Attempt any TWO of the following:
a) Find area enclosed by two parabolas $y^{2}=2 x$ and $x^{2}=2 y$.
b) Attempt the following.
i) An unbiased coin is tossed 3 times. Find probability of getting exactly two tails.
ii) Fit a poissons distribution for the following observations.

Accident per shift (xi)	0	1	2	3	4
Frequency (fi)	192	100	24	3	1

c) In a sample of 1000 students, mean of a certain test is 14 and standard deviation is 2.5 . Assuming the distribution to be normal. Find how many student score.
i) Between 12 and 15
ii) Above 18 .

Given $\quad \mathrm{A}(0.8)=0.2881$

$$
\mathrm{A}(0.4)=0.1554
$$

$$
\mathrm{A}(1.6)=0.4452
$$

6. Attempt any TWO of the following:
a) Attempt the following.
i) Using Bisection method, find the approximate root of $x^{2}+x-3=0$ (carry out two iteration).
ii) Solve by Jacob's method (carry out two iteration).

$$
\begin{aligned}
& 2 x+y+z=4, \quad x+2 y+z=4 \\
& x+y+2 z=4
\end{aligned}
$$

b) Solve the equation by Gauss Elimination method.
$4 x+y+2 z=12, \quad-x+11 y+4 z=33$, $2 x-3 y+8 z=20$.
c) Find the approximate value of $\sqrt[3]{7}$ by using Newton Raphson method up to four iterations.

