[1 of 4]

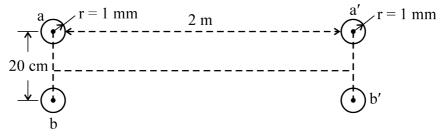
21222 **3 Hours / 70 Marks** Seat No. 15 minutes extra for each hour

Instructions : (1)Answer each next main Question on a new page.

- (2)Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

10


1. **Attempt any FIVE :**

- (a) List out the role of power system engineer in analysis of given power system.
- (b) Draw neat labelled equivalent circuit of alternator.
- (c) State the impact of resistance and capacitance on performance of transmission line.
- (d) State the four factors that governs the skin effect in transmission line conductors.
- (e) Define the generalised constant $A \times B$ refer to transmission line.
- (f) Define the generalised circuit applicable to transmission line.
- (g) List out any two reactive power compensating equipment used in the power system.

[2 of 4]

2. Attempt any THREE :

- (a) Summarise the advantages of per-unit system in power system analysis.
- (b) Calculate the Self GMD and Mutual GMD for following conductors configuration.

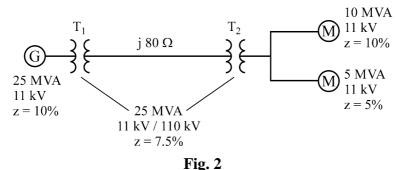


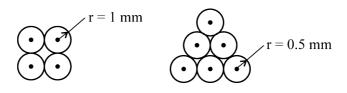
Fig. 1

- (c) Determine the GCC for medium transmission line represented by 'T' network.Assume Y = total admittance / ph. & Z = total impedance / ph.
- (d) Describe the benefits of generalised circuit representation of transmission line.

3. Attempt any THREE :

 (a) Develop reactance diagram of following power system considering generator rating as base values.

- (b) Develop the equation for inductance of single phase line composed of solid conductors.
- (c) A three phase transmission line have total impedance (10 + j 32) ohms/ph and admittance 2.8×10^{-4} s/ph. Calculate the GCC considering ' π ' network.
- (d) A 220 kV transmission line has GCC as $A = 0.75 \ 0.2^{\circ}$, $B = 110 \ 85^{\circ} \Omega$. Calculate real power at unity power factor that can be delivered when voltages at both ends of the tr. line maintained constant.


22529

12

[**3** of **4**]

4. Attempt any THREE :

- (a) Explain the different aspects of power system analysis.
- (b) Determine the GCC $A \times B$ for the resultant network when two generalised circuits are connected in parallel.
- (c) Determine the Self GMD of following configured conductors.

- (d) Develop the condition for maximum real power flow at receiving end of the transmission line.
- (e) Evaluate the co-ordinates of the centre and radius of sending end circle diagram for a power system having following data :

A = 0.96
$$\angle 3^{\circ}$$
, B = 50 $\angle 73^{\circ} \Omega$ /ph., V_{Sl-l} = 120 kV $\angle 2^{\circ}$, V_{Rl-l} = 100 kV $\angle 0^{\circ}$.

5. Attempt any TWO :

- (a) Calculate the total capacitance of each conductor of 3.3 kV, 3 phase 50 Hz,
 50 km long transmission line composed of solid conductors of 20 mm
 diameter and are spaced at the corners of a triangle with 3 m, 5 m, 4 m sides.
- (b) Write the procedure to draw receiving end circle diagram.
- (c) A three phase 220 kV transmission line has A = D = 0.9 ∠0.2°, B = 100∠72°
 Ω. Determine the max. power supplied at sending end when sending end voltage is maintained at 230 kV.

12

6. Attempt any TWO :

(a) For a generalised circuit representation of transmission line prove that :

 $V_R = AV_S - BI_S$

 $I_R = - \, C V_S + D I_S$

- (b) Explain the need of reactive power compensation in power system. Suggest the suitable compensating equipment for following area :
 - Load Center
 - 300 km long transmission line
 - Distribution substation
- (c) Evaluate the real power at the sending end 3-phase transmission line having $GCC A = 0.98 \angle 3^{\circ}$ and $B = 105 \angle 72^{\circ} \Omega$, Power delivered is 50,000 kVA, 132 kV, 0.85 lag p.f. Load angle is 11°.