Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Sub Q. } \\ \mathrm{N} . \end{gathered}$	Answer	Marking Scheme
Q-1		Attempt any FIVE of the following:	10 M
	a)	State any four benefits of Irrigation.	02
	Ans.	Following are the benefits of irrigation: - 1) Increase in food production 2) Protection from famine 3) Cultivation of cash crops 4) Flood control 5) Generation of Hydro-electric power 6) Domestic \& industrial water supply 7) Inland navigation 8) Increase in revenue to the government 9) Increase in communication 10) Canal plantation 11) Improvement in ground water storage 12) Aid in civilization	$\begin{gathered} 2 \mathrm{M} \\ (1 / 2 \\ \text { Each }) \end{gathered}$
	b)	Define Yield and Dependable yield.	02
	Ans.	Yield: It is the total quantity of water available from a catchment area at the outlet in period of one year. Dependable yield: It is the quantity of water available for a given number of years per rainfall cycle.	$1 \mathrm{M}$ $1 \mathrm{M}$

	c)	Define Base period and Crop period.	$\mathbf{0 2}$
Ans.	Base period: It is the period in days from first watering at the time of sowing to the last watering before harvesting. Crop period: It is the period in number of days that crop takes from the instant of its sowing to that of its harvesting.	1 M	

Q-2		Attempt any THREE of the following:	12 M
	a)	Define Rainfall. Explain with neat sketch automatic rain gauge.	4
	Ans	Rainfall: Rainfall is the depth in mm or cm of water that would stand on the surface of the earth provided it were not lost by evaporation or absorption or any other manner. Types of automatic rain gauges: 1) Weighing bucket gauge 2) Tipping bucket gauge 3) Syphon gauge (Float type rain gauge) Weighing type rain gauge: 1.The rain water passes through a funnel into a bucket called as catch bucket which is placed on weighing platform. 2. When weight of bucket is increased due to rain water the weighing platform moves. Movement of weighing platform is transmitted to Links and levers to a pen arm. This pen traces the collected amount of rainfall on a graduated graph paper wrapped around drum. 3. Thus increasing weight of the bucket helps in recording the rainfall with time by moving a pen on a revolving drum. Tipping Bucket type rain gauge : 1. A Steven's tipping bucket type rain gauge consist of 30 cm dia. Sharp edge receiver 2. End of the receiver is provided with funnel. A pair of bucket is provided under the funnel in such a way that one bucket receives 0.25 mm of precipitation .it tips, discharging its content to container brining the other bucket the funnel. 3. Tipping of the bucket completes an electric circuit causing movement of pen to mark on clock driven revolving drum which carries a record sheet. 4. The electric pulses are generated due to tipping of bucket is recorded at the control room far away from the rain gauge station.	1 M 1M- Explainatio n of any one rain gauge. 2M- For fig of res. Rain gauge statiom

| | Thiessen's polygon method is used for determining average rainfall of catchment.
 In this method, rainfall recorded by each station is weighed according to the area.
 It is also known as weighed mean method. It is more accurate than the arithmetic
 mean method. Consider rain gauge stations A, B, C, and D representing the area as
 shown in figure.
 Catchment boundary |
| :--- | :--- | :--- | :--- |
| Polygon | |

\begin{tabular}{|c|c|c|c|}
\hline \& d) \& Draw a neat sketch of area capacity curve. Describe how to interpret various parameters from this curve. \& 4 \\
\hline \& Ans. \& \begin{tabular}{l}
 \\
From the contour plan of reservoir site the areas of the successive contour \(\mathrm{A}_{1}, \mathrm{~A}_{2}\) ,\(\ldots ., \mathrm{A}_{\mathrm{n}}\) are determine with the help of planimeter. \\
The area A 1 is the minimum at the bottom of the basin and is the maximum area at the top of basin. This curve gives the area submerged at different elevations. Uses of area capacity curve: \\
1) To decide capacity of reservoir \\
2) To know water spread area of reservoir \\
3) To find out elevation (RL) for any capacity \\
4) To fix control levels of dam
\end{tabular} \& \begin{tabular}{l}
2M- For fig \\
2M- \\
Explaination
\end{tabular} \\
\hline Q-3 \& \& Attempt any THREE of the following: \& 12 M \\
\hline \& a. \& Define runoff. State the various factors affecting runoff. \& 04 \\
\hline \& Ans \& \begin{tabular}{l}
Runoff: \\
The portion of rainfall water which flows over the ground surface after all losses have been taken place is known as runoff. \\
It is expressed in mm or cm . \\
Runoff = Rainfall - Losses \\
Factors affecting on runoff : \\
Following are the various factors affecting on runoff, \\
1. Intensity of rainfall: If Intensity of rainfall is more, runoff will be more and vice versa. \\
2. Topography of the catchment: If the catchment has steep slope, runoff will be more and if catchment has flat terrain or depression runoff will be less. \\
3. Soil characteristics of the catchment: Catchment consisting of rocky soil has more runoff and if it is consist of sandy soil; runoff will be less due to infiltration losses. \\
4. Shape and size of catchment: If catchment area is small and fern shaped, runoff will be less. And if catchment area is large and fan shaped, runoff will be more.
\end{tabular} \& 1 M

3 M
(1 M Each)

\hline
\end{tabular}

	5. Geological conditions of catchment area: If catchment area consists of fissures, cracks, undulations, losses will be more and runoff will be less. 6. Cultivation and vegetation cover in catchment area: If over catchment area cover of cultivation, vegetation is more, runoff will be less. 7. Weather conditions: If temperature in the catchment area is high, runoff will be less due to evaporation losses and vice versa.	
b.	Define percolation tank and state the points to be considered for selecting the site for percolation tank.	4 M
Ans	Percolation tank is an artificially constructed surface. Water percolates from the tank and meets the ground water table. Due to this the water level of existing wells increases and then it is pumped for irrigation They are constructed at suitable site by providing earthen dam and this is indirect system of irrigation. Points to be considered for selecting the site for percolation tank : 1. To allow the percolation of water, the bed of tank should be pervious. 2. The nalla or stream should have sufficient discharge in monsoon. 3. There should be sufficient number of wells on downstream side of percolation tank. 4. The flanks on both side of nalla or stream should be rising with steep slope. 5. An agricultural land should be available near each well for irrigating the crops. 6. Construction material, labour, machine should be available near the site.	1M $\begin{gathered} 3 \mathrm{M} \\ (1 \mathrm{M} \mathrm{Each}) \end{gathered}$

Q. 4		Attempt any THREE of the following:	12
	a.	Derive the relationship between Duty, Delta and Base period.	04
	Ans.	Let, $\mathrm{D}=$ duty in hectares/cumec. $\Delta=$ total depth of water supplied in metres $\mathrm{B}=$ base period in days 1. If we take a field of area D hectares, water supplied to the field corresponding to the water depth Δ metres will be $=\Delta \times \mathrm{D}$ hectares-metres. $\begin{equation*} =\mathrm{D} \times \Delta \times 10^{4}=\mathrm{D} \times \Delta \times 10^{4} \text { cubic-meters } . \tag{1} \end{equation*}$ 2. Again for the same field of D hectares, one cumec of water is required to flow during the entire base period. Hence, water supplied to this field. $\begin{equation*} =(1) \times(\mathrm{B} \times 24 \times 60 \times 60) \mathrm{m}^{3}=(1) \times(\mathrm{B} \times 24 \times 60 \times 60) \mathrm{m}^{3} \ldots . \tag{2} \end{equation*}$ Equating Equations (1) and (2), we get $\begin{aligned} & \mathrm{D} \times \Delta \times 10^{4}=\mathrm{B} \times 24 \times 60 \times 60 \mathrm{D} \times \Delta \times 10^{4}=\mathrm{B} \times 24 \times 60 \times 60 \\ & \Delta=(\mathrm{B} \times 24 \times 60 \times 60) /\left(\mathrm{D} \times 10^{4}\right) \\ & \Delta=[8.64 \mathrm{~B} / \mathrm{D}] \text { meters. } \end{aligned}$	1 M

b.	Explain the various forces acting on gravity dam with neat sketch.	04
Ans.	Various forces acting on gravity dam, 1. Water pressure.(P1) 2. Weight of wedge water on $\mathrm{u} / \mathrm{s}(\mathrm{P} 2)$ 3. Weight of wedge water on d / s (P3) 4. Weight of dam(W) 5. U / s slit pressure (Ps) 6. Seismic/ earthquake force (Pe) 7. Uplift pressure (U) 8. Wind pressure. 9. Wave pressure. 10. Ice pressure. Various forces acting on gravity dam, 1. Water pressure ($\mathbf{P} 1$): It is the major external force acting on dam, $\mathrm{P} 1=(1 / 2) . \mathrm{w} \cdot \mathrm{h} \cdot \mathrm{h}=\left(\mathrm{wh}^{2} / 2\right)$ Where, $\mathrm{w}=$ specific weight of water. $\mathrm{h}=$ heat of water on u / s. Acting at $\mathrm{h} / 3$ from base. This is overturning force. 2. Weight of wedge water on u / s (P2): 1. It acts downwards through center of gravity 2. This is Retaining force. This force P 2 is the weight of water per unit length contained in the area ABCD. 3. It acts through center of gravity of the area.(this force is to be considered when u / s face is partly vertical and partly inclined. 4. If u / s face is fully vertical only P1 is to be considered. 3. Weight of wedge water on d / s (P 3): 1. This is the weight of water on d / s wedge acting at center of gravity this is retaining force. P3 $=(1 / 2) . \mathrm{w} \cdot \mathrm{hd} \cdot \mathrm{hd}=\left(\mathrm{w} \cdot \mathrm{hd}^{2} / 2\right)$ Acting at $\mathrm{d} / 3$ from base. Where, hd= depth of water on d / s.	

4. Weight of dam (W):
5. This is the main stabilizing force which counters balance all the external forces acting on the dam.
6. So the dam should be constructed with heavy materials of high specific gravity.
$\mathrm{W}=$ Area of cross section of dam x Unit weight of dam material

- Acting at center of gravity of dam section downwards, this is the retaining force.

5. U/s silt pressure (Ps):
6. This is the force due to deposition of slit on u / s carried by flowing water. This is the overturning force.
7. $\mathbf{P s}=(\mathbf{1} / \mathbf{2})$.Ws.hs.hs. $(\mathbf{1}-\sin \emptyset)$
$(1+\sin \varnothing)$
$=\underline{\mathrm{ws}^{2}} \mathrm{hs}^{2} \cdot(1-\sin \phi)$
$2 \quad(1+\sin \varnothing)$
$P s=\frac{w s . h s^{2}}{2} \cdot \frac{(1-\sin \phi)}{(1+\sin \phi)}$
Acting at hs/3 from base.
Where,
Ws = weight of submerged silt.
$\emptyset=$ Angle of internal friction of the silt.
hs = depth of silt.
8. Seismic / Earthquake force(Pe):

When the selected dam sites come under the seismic zone, the effect of earthquake waves should be taken into account as it is dangerous for the structure.
$\mathrm{Pe}=500 . \mathrm{h}^{2}$
Acting at (0.42)h approximately in d / s direction. This is overturning force.
7. Uplift Pressure (U):

- It is the pressure due to the seepage of water through the foundation.
- It acts vertically upwards on foundation of dam and reduce the effective weight.
- To reduce the seepage i.e. uplift pressure galleries are provided on base of dam.

$$
\begin{aligned}
& \mathrm{U}=\frac{(\mathrm{k} \cdot \mathrm{w} \cdot \mathrm{~h}+\mathrm{k} \cdot \mathrm{w} \cdot \mathrm{hd})}{2} \cdot \mathrm{~b} \\
& \mathrm{U}=\mathrm{k} \cdot \mathrm{w} \cdot \mathrm{~h} \cdot \frac{(\mathrm{~h}+\cdot \mathrm{hd})}{2}
\end{aligned}
$$

Where,
$\mathrm{K}=$ permability of foundaion.
$\mathrm{K}=0$ for hard pervious rock.
$\mathrm{K}=0.2$ to 0.6 for other rock.
8. Wind Pressure :

- The wind acting on all exposed faces of dam exert pressure in wind direction .this pressure depends upon speed of wind.

9. Wave Pressure :

Component parts with their functions:

1. Intake Well :

- It is a well-constructed in the bed of the river at a suitable site to collect the water from the source.
- It should have its upper portion constructed below the minimum water level expected at any time and bottom portion embedded well below the bed of the river.

2. Intake Pipe:

- The purpose of the intake pipe is to convey the collected water from intake well to jack well which is constructed to lift the water to the raising main.

3. Jack well :

- The water from intake well is carried out to jack well through intake pipe, proper care should be taken, so that the jack well does not get settle and remains stable.
- It should not be submerged by the water in the river during the periods of high floods.

4. Centrifugal Pump and pumping house:

- A centrifugal pump with suction pipe is provided with non-return foot valve which is installed in jack well.
- The level of foot valve should be always below the minimum water level in the river.

5. Raising main (Delivery pipe):

- It is a delivery pipe which transmits the water from jack well to the delivery chamber cum pumping house for the next stage.
- The length of the raising main should be small and the slope of pipe should not be too steep, to avoid back flow, water hammer in pipe etc.
- The alignment of the raising main should avoid the excessive cutting or lowering of the pipe.

6. Delivery chamber cum pumping house:

- The water from raising main is delivered to this chamber.
- The elevation of this chamber should be such that the water can easily flows into the distribution system by gravity flow.
- Another centrifugal pump may be installed in the delivery chamber if the water is to be lifted to the next stage of the lift irrigation scheme.

7. Distribution system:

- The water may be conveyed to the command area either by gravity canals or by suitable underground distribution system depending upon the site conditions.

$\begin{gathered} \text { Q- } \\ 5 \end{gathered}$		Attempt any TWO of the following:	12 M
	a.	Calculate the base width of the elementary section of gravity dam from the following data: Unit weight of concrete $=\mathbf{2 4 8 0} \mathbf{~ K g} / \mathbf{m}^{\mathbf{3}}$ H.F.L. at R.L. $=\mathbf{3 7 3 . 0 0} \mathbf{m}$ Coefficient of permeability $(\mathrm{K})=\mathbf{0 . 3}$ Coefficient of static friction $(\boldsymbol{\mu})=\mathbf{0 . 7 0}$	6M
	Ans.	Given, $\mathrm{K}=0.3, \quad \mu=0.7, \quad \mathrm{H}=\mathrm{H} . \mathrm{F} . \mathrm{L} . \text { at R.L. }=373 \mathrm{~m}$ Unit weight of concrete $=2480 \mathrm{Kg} / \mathrm{m}^{3}$ $\begin{aligned} & \mathrm{G}=\text { Specific gravity }=\text { Unit weight of concrete } / 1000 \mathrm{Kg} / \mathrm{m}^{3} \text { (unit weight of water) } \\ & \mathrm{G}=2.48 \end{aligned}$ Conditions to be fulfilled are i) No Tension: $\begin{aligned} \mathrm{b} & =\mathrm{H} / \sqrt{ }(\mathrm{G}-\mathrm{K}) \\ & =373 / \sqrt{ }(2.48-0.3) \\ & =373 / \sqrt{ } 2.18 \\ & =373 / 1.4765 \end{aligned}$ $\mathrm{b}=252.62 \mathrm{~m} .$ ii) No Sliding: $\begin{aligned} & \mathrm{b}=\mathrm{H} /(\mathrm{G}-\mathrm{K}) \mu \\ & =373 /(2.48-0.3) 0.7 \\ & =373 / 1.526 \\ & \mathrm{~b}=244.43 \mathrm{~m} . \end{aligned}$ The highest among the two base width value is to be selected i.e. $\mathrm{b}=252.62 \mathrm{~m}$	1 M

b)	Draw a neat sketch of Barrage with its components. Enlist any two advantages and disadvantages of it.	6M
Ans	Advantages of Barrage:- 1. Area under submergence of water is less. 2. Cost of rehabilitation is less. 3. It is economical as cost of protective and energy dissipation work is less. 4. All the stored water can be utilised for irrigation \& other purposes. 5. Collected silt in the barrage can be regularly removed hence used with full capacity throughout its life. Disadvantages of barrage:- 1. Storage capacity is less as compared to dams. 2. Initially needs high cost for construction. 3. Maintenance cost is more.	2 M for sketch with labeling 2 M $(1 \mathrm{M}$ Each $)$ 2 M (1 M Each)
c.	Fix the control levels DSL, FRL, HFL and TBL from following data: i) Effective storage required 3000 Ha.m. ii) Carry over allowances and tank losses - $\mathbf{2 5 \%}$ iii) Dead storage- $\mathbf{1 0 \%}$ of gross storage. Assume Flood lift as 1.5 m and free board as 2.5 m .	
Ans	Effective live storage $=3000$ Ha.m $\begin{aligned} \text { Dead storage } & =10 \% \text { of Gross storage } \\ & =\frac{10}{100}=0.1 \text { of Gross storage } \end{aligned}$ $\begin{aligned} \text { Carry over allowances and tank losses } & =25 \% \\ & =\frac{25}{100} \times 3000=750 \text { Ha.m } \end{aligned}$ $\begin{aligned} \text { Total live storage } & =\text { Effective live storage }+ \text { Carry over allowances and tank losses } \\ & =3000+750 \\ & =3750 \text { Ha.m } \\ & =37.50 \mathrm{Mm}^{3} \end{aligned}$	1M

Ans	Transit losses $=18 \%$ Time factor $=0.7$, Capacity Factor $=0.8$ For Sugar cane $\mathrm{Q}=\text { Area } / \text { Duty }=350 / 700=0.5 \mathrm{cumec}$ For Rice (Kharif) $Q=\text { Area } / \text { Duty }=150 / 600=0.25 \text { cumec }$ For Bajari (Kharif) $Q=\text { Area } / \text { Duty }=600 / 1500=0.4 \text { cumec }$ For Wheat (Rabbi) $\mathrm{Q}=\text { Area } / \text { Duty }=1200 / 1800=0.67 \text { cumec }$ For Vegetable (H.W.) $\mathrm{Q}=\text { Area } / \text { Duty }=400 / 800=0.5 \text { cumec }$ Discharge required for Kharif season $=0.5+0.25+0.4=1.15$ cumec Discharge required for Rabbi season $=0.5+0.67=1.17$ cumec Discharge required for $\mathrm{HW}=0.5+0.5=1.0 \mathrm{cumec}$ $\text { Design Discharge }=\frac{\mathrm{Q}_{\max }}{\text { Time Factor } \times \text { Capacity Factor } \times \text { Transit Losses }}$ Design Discharge $=1.17 /[0.7 \times 0.8 \times\{(100-18) / 100\}]=1.17 / 0.459$ Design Discharge $=2.55$ cumec	1/2M 1M 1M
b	Calculate the balancing depth for a canal section having the following details: Bed width (b) $=\mathbf{4 m}$. F.S.D. $=1.5 \mathrm{~m}$, Top width of bank - 2.5 m . Side slopes $1.5: 1$ in cutting Side slopes 2:1 in banking Free board 0.5 m	6M
Ans	Given, $\mathrm{b}_{\mathrm{c}}=4 \mathrm{~m}, \mathrm{FSD}=1.5 \mathrm{~m}, \mathrm{Zc}=1.5: 1, \mathrm{Zf}=2: 1, \mathrm{FB}=0.5 \mathrm{~m}$ Let ' d_{c} ' be the balancing depth, $\mathrm{h}=$ height of bank above GL	

	2. To separate the stilling pocket from scoring sluices. 3. To prevent formation of cross currents to avoid damaging effects. 4. To cut off the main portion of the river \& provide a comparatively quite, pocket enter clear water in the canal. iii) Fish ladder: 1. To provide free movement of fishes. 2. To help the survival of the fishes. iv) Scouring Sluice: 1. To scour deposited silt and soil. 2. To provide greater waterway for floods. 3. To control the silt entry into canal.	1 M (any one)

