22441

21222

3 Hours / 70 Marks Seat No.

15 minutes extra for each hour

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
 - (7) Preferably, write the answers in sequential order.

Marks

1. Attempt any FIVE of the following:

10

- a) List different types of thermodyanamic systems.
- b) Draw P-V diagram of Diesel Cycle.
- c) State advantages of liquid fuel over solid fuel.
- d) Define:
 - i) Dryness fraction
 - ii) Degree of superheat
- e) Define:
 - i) Indicated power
 - ii) Volumetric efficiency
- f) List different non conventional energy sources.
- g) State the advantages of Bio-mass power.
- h) Draw a neat sketch of Reciprocating Compressor.

22441		[2]		4
2.	Attempt any THREE of the following:			Marks 12
	a)	Write classification of steam boilers.		
	b)		ch P-V and T-S diagram of isobaric process and tropic process.	
	c)	Compare impulse turbine and reaction turbine on the basis of		
		i)	Pressure drop	
		ii)	Blade speed and steam speed	
		iii)	Frictional losses	
		iv)	Power capacity	
	d)	Clas	sify the air compressor on the basis of	
		i)	Displacement	
		ii)	According to motion	
		iii)	Number of stages	
		iv)	Capacity of compressor	
3.		Attempt any THREE of the following:		12
	a)	Explain otto cycle with P-V and T-S diagram and write it's equation for thermal efficiency with it's significance.		
	b)	A sample of coal has the following composition on the mass basis: carbon 82%, hydrogen 8%, sulphur 2%, oxygen 4% and ash 4%. Calculate using Dulong's formula higher and lower calorific value of fuel.		
	c)	Sugg	gest energy conservation techniques used in refrigeration.	
	d)	A gas has volume of $0.16\mathrm{m}^3$, pressure 2 bar and temperature $100^\circ\mathrm{C}$. If gas is compressed at constant pressure until it's volume becomes $0.112\mathrm{m}^3$. Determine temperature at the end of compression.		

22441	[3]
4441	[3]

			Marks
4.		Attempt any THREE of the following:	12
	a)	Explain application of conduction and convection mode of heat transfer in Automobiles.	
	b)	Describe with neat sketch working of Bomb calorimeter.	
	c)	Sketch energy flow diagram for steam boiler.	
	d)	Describe with neat sketch working of two stage reciprocating air compressor with P-V diagram.	5
	e)	Explain co-generation system on the basis of sequence of energy use.	
5.		Attempt any <u>TWO</u> of the following:	12
	a)	Describe ultimate analysis and proximate analysis of solid fuels.	
	b)	Draw a neat sketch of surface condenser and write four applications of surface condenser.	
	c)	Describe government policy (MNRE) for harnessing the potential power of renewable energy sources.	
6.		Attempt any <u>TWO</u> of the following:	
	a)	Compare centrifugal and axial compressor on the basis of	
		i) Working principle	
		ii) Capacity	
		iii) Nature of flow	
		iv) Application	
		v) Maintenance	
		vi) Delivery pressure range	

- Marks
- b) Calculate the enthalpy of 1 kg of steam at a pressure of 7 bar and dryness fraction 0.8. How much heat would be required to generate 2 kg of this steam from water at 30°C. Take sp. heat of water $C_{PW} = 4.187$ KJ/kg K, hf = 697.20 KJ/kg, hfg = 2066.3 KJ/kg.
- c) Explain the construction and working of electricity generation through photovoltaic system.