

SUMMER – 2019 EXAMINATIONS es Model Answer

Subject Code:

22438

Important Instructions to examiners:

Subject Name: Theory of Machines

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1			10
1	(a)	Attempt any <u>FIVE</u> of the following: (2 x 5) Define term 'Kinetics'.	10 02
1			02
	Ans.	(02 Mark for the appropriate significance of Kinetics)	02
		Definition of Kinetics:	02
		It is that branch of Theory of Machines which deals with the inertia forces which arise from	
		the combined effect of the mass and motion of the machine parts.	
1	(b)	List different types of 'Kinematic Pair'.	02
		 (Classification on any 2 basis with sub types, 01 Mark each) Types of Kinematic pairs: According to the type of relative motion between the elements: Sliding pair. Turning pair. Rolling pair. Screw pair. Spherical pair. (2) According to the type of contact between the elements: Lower pair. Lower pair. Higher pair. [3] According to the type of closure: Self closed pair. Force - closed pair. [4] According to Constrained Motion: Incompletely Constrained Completely Constrained Constrained 	02

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1	(c)	State the relation between relative velocity and motion of link in mechanism.	02
	Ans.	Relation between Relative Velocity and motion of link in mechanism:	
		The relative velocity is the velocity of any point with respect to any other some point on the same link. Let,	02
		V be the relative velocity of one end w.r.t. other end of link in m/sec	
		ω be the angular motion in rad/sec &	
		r as the length of same link in meter	
		Then, the relation is expressed as;	
1		$V = r x \omega$ m/sec	
1	(d)	List any four applications of 'cam' and 'follower'.	02
	Ans.	(Any four applications, ½ Marks for each)	
		Applications of Cam and Follower:	
		[1] Operating the inlet and exhaust valves of internal combustion engines	
		[2] Used in Automatic attachment of machineries, paper cutting machines	02
		[3] Used in Spinning and weaving textile machineries.[4] Used in Feed mechanism of automatic lathes etc.	
		[5] Used in Diesel Fuel Pumps.	
		[6] Used in printing control mechanism	
		[7] Used in wall clock	
1	(0)	[8] Used in feed mechanism of automatic lathe.	02
I	(e)	Define the term 'Dwell' w.r.t. cam profile.	02
	Ans.	Definition of Dwell:	
		It is duration of cam rotation during which there is no motion to the follower. That means	02
		during dwell period though cam rotates but follower remains stationary.	
		OR When the follower is not moving upward and downward even when the cam rotates is	
		called as dwell.	
1	(f)	State the functions of clutches.	02
	Ans.	Functions of Clutches:	
		[1] To engage and disengage output shaft with the engine shaft as and when required.	02
		[2] To engage shafts very smoothly without much slipping of friction surfaces.	
		[3] To transmit power from engine shaft to output shaft without loss.	
		[4] To engage the shafts smoothly without noise and jerk	

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	(g)	Define coefficient of fluctuation of energy.	02
	Ans.	Definition of Coefficient of Fluctuation of Energy:It may be defined as the ratio of the maximum fluctuation of energy to the work doneper cycle.Mathematically it is expressed as; $C_{\rm E} = \frac{\text{Maximum fluctuation of energy}}{\text{Work done per cycle}}$ The work done per cycleThe work done per cycle (in N-m or joules)	02
2		Attempt any THREE of the following: (3 x 4)	12
2	(a)	Draw a neat diagram of 'Scotch Yoke Mechanism'. Explain its constructional features in brief.	04
		Crank (Link 2) Link 1	02 Marks for Labeled Sketch
		 Constructional Features of Scotch Yoke Mechanism: [1] In this mechanism, two sliding pairs and two turning pairs are used. So it is an inversion of Double Slider Crank Chain Mechanism. [2] It consists of following types of links with relative motion as mentioned below; Link 1 (B) – Fixed Link – Guide the Frame Link 2 – Crank – Turning Motion – Rotates about Point B in Link 1 Link 3 - Slider -Sliding Motion 	02 Marks for Constructional Features
		Link 4 – Fixed Link – Frame – Reciprocating Motion [3] The inversion is obtained by fixing either the Link 1 or Link 3.	

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	(a)	Draw a neat diagram of 'Scotch Yoke Mechanism'. Explain its constructional features in brief.	04
	Ans.	[4] When the link 2 (which corresponds to crank) rotates about <i>B</i> as centre, the link 4 (which corresponds to a frame) reciprocates. It is used for converting rotary motion into a reciprocating motion.	
2	(b)	Explain the term: (i) Slip (ii) Creep	04
	Ans.	Slip: The forward motion of the driver without carrying the belt with it or forward motion of the belt without carrying the driven pulley with it, is called slip of the belt. Slip reduces velocity ratio and also power transmission capacity of the belt drive. Less slip in the belt drive is desirable.	
		OR	01
		When belt is transmitted power from driver to driven pulley, there is a loss of motion due to insufficient frictional grip and therefore the speed of driven pulley is less than driver pulley. This is known as <u>Slip of the belt</u> & generally expressed in % Slip of Belt by neglecting thickness of belt is expressed as below;	
		$\frac{N_2}{N_1} = \frac{d_1}{d_2} \left(1 - \frac{s}{100} \right)$	
		Creep: When the belt passes from the slack side to the tight side, a certain portion of the belt extends and it contracts again when the belt passes from the tight side to slack side. Due to these changes of length, there is a relative motion between the belt and the pulley surfaces. This relative motion is termed as creep.	01
		Creep reduces velocity ratio and also power transmission capacity of the belt drive. Less creep in the belt drive is desirable.	
		Creep of Belt is expressed as below;	01
		$\frac{N_2}{N_1} = \frac{d_1}{d_2} \times \frac{E + \sqrt{\sigma_2}}{E + \sqrt{\sigma_1}}$	
		σ_1 and σ_2 = Stress in the belt on the tight and slack side respectively, and	
		E = Young's modulus for the material of the belt.	01

	Sub		Answer		Marking
Q.	Q.				Scheme
No.	N.				
2	(c)	Draw the following displace	ment diagram for follower:		04
		(i) SHM (ii) Uniform acce	leration and deceleration		
	Ans.	Displacement Diagram for S	45678 $0 \rightarrow \theta_{\rm R}$	IM):	02
1			Angular Displacement		
		Displacement Diagram for U	Iniform Acceleration and De	celeration:	
		Poisplacement	J F G H S S S S S S S S S S S S S	7 ¹ 8 ¹ →	02
2	(d)	Differentiate between belt o	drive and gear drive.		04
	Ans.	Difference between Belt and	d Gear Drive: (Any 04 Points	, 01 Mark for each)	
		Basis	Belt Drive	Gear Drive	
		Power transmitting	Less	High	
		capacity			
		Slip & Creep	Occurs	No	
		Material used	Flexible in nature	Rigid material used	04
		Type of drive Centre distance between	Slip drive Medium or large	Positive drive	
		the shafts	Internation of large	Very less	
		Overload taking capacity	Slips when overloaded	Damages when overloaded	
		Velocity Ratio	Does not remain constant	Remain constant	
		Use	Low to moderate power transmission	High power transmission	

Q.	Sub Q. N.	Answer	Marking Scheme
No. 3	(a)	Draw a neat sketch of 'Locomotive coupler' mechanism. Explain its working in brief.	04
		Link 4 Wheels Link 3 C J C J Link 3 Link 1 B Eigure: Coupler Rod of Locomotive (Link AD = Link BC = Crank Link CD = Coupling Rod Link AB = Fixed Link = Frame)	02
		Working of Coupler Rod of Locomotive: It is an example of Double Crank Mechanism in which, Links AD and BC (having equal length) act as cranks and are connected to the respective wheels. Link CD acts as a coupling rod and link AB is fixed in order to maintain a Constant center to center distance between them. This mechanism is meant for <u>transmitting rotary motion</u> <u>from one wheel to the other wheel.</u>	02
3	(b)	Name the suitable mechanism to be used for following applications:	04
		(Correct Name of Suitable Mechanism for Given Application, 01 Mark for each)	
		S.N. Application Suitable Mechanism	
		(i) Lifting water from well Pendulum pump (Bull Engine)	
			04
		(ii) Connecting misaligned shaft Oldham's coupling	
		(iii) Converting rotary motion into Beam Engine (Crank & Lever Msm) reciprocating motion	
		(iv) Maintain constant relative motion Coupling rod of locomotive between two rotary elements	

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
3	(c)	Explain the construction of 'Disc Brake' with neat sketch.	04
	Ans.	Construction of Disc Brake: Modern vehicles always equipped with disc brakes on at least the front two wheels. It consists of mainly 3 parts, [1] Rotor [2] Caliper [3] Brake pads In between each piston and disc, friction pad held in position by springs. Higher applied forces can be used in disc brakes than in drum brakes, because the design of the rotor is stronger than the design of the drum. Due to this, large resistance is carried by flat disc. In this, Flat plate disc with flat friction pad are used against heavy drum. Friction surface directly exposed to air cooling which results better (faster) heat	02
		dissipation. Caliper Brake Brake Pads Rotor Figure: Disc Brake	02
3	(d)	Draw basic 'cam-follower' diagram showing its terminology (Minimum four terms)	04
	Ans.	Basic Cam Follower Profile:	02 Marks for Cam Profile 02 Marks for 04 Terms indicating on it

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	(e)	State the necessity of Balancing. List different types of Balancing Methods.	04
		(02 Marks for Necessity, 02 Marks for Types)	
		Necessity of Balancing:	
		[1] The high speed of engines and other machines is a common phenomenon now-a-	
		days. It is, therefore, very essential that all the rotating and reciprocating parts should be completely balanced as far as possible.	
		[2] If these parts are not properly balanced, the dynamic forces are set up. These	02
		forces not only increase the loads on bearings and stresses in the various members,	
		but also produce unpleasant and even dangerous vibrations.	
		[3] The balancing of unbalanced forces is caused by rotating masses, in order to	
		minimize pressure on the main bearings when an engine is running.	
		Types of Balancing Methods:	
		[1] Balancing of rotating masses:	
		(a) Balancing of a single rotating mass by a single rotating mass in the same plane	
		(b) Balancing of a single rotating mass by two masses rotating in the different planes	
		(c) Balancing of different masses rotating in the same plane	02
		(d) Balancing of different masses rotating in the different planes	
		[2] Balancing of Several masses revolving in same plane:	

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	Ν.		
4		Attempt any TWO of the following (2 x 6)	12
4	(a)	Draw the labeled diagram of Crank and slotted lever Quick Return Mechanism.	06
		Neat labeled Sketch of Crank and Slotted Lever Quick Return Mechanism:	
		Connecting Cutting stroke tod R1 Ram Tool Line of Barrier B Return stroke R2	
		P1 Slider (Link 1) Crank (Link 2)	04 Marks for suitable sketch
		B	
		$ \begin{array}{cccc} B_1 & \alpha & B_2 \\ (90^\circ - \frac{\alpha}{2}) & & Fixed \\ Slotted bar & (Link 3) \end{array} $	02 Marks for Labeling
		(Link 4) 🖉 🕅 A	
4	(b)	A crank of slider crank mechanism rotates clock wise at constant speed of 300 rpm.	
		The crank is 150 mm and connecting rod is 600 mm long. Determine: (i) Linear velocity of the mid-point of connecting rod.	06
		(ii) Angular acceleration of connecting rod at a crank angle of 45° from inner	
		dead centre position.	
	Ans.	Given Data:	
		Given : $N_{BO} = 300$ r.p.m. or $\omega_{BO} = 2 \pi \times 300/60 = 31.42$ rad/s; $OB = 150$ mm =	01 Mark for
		0.15 m ; BA = 600 mm = 0.6 m We know that linear velocity of B with respect to O or velocity of B,	Given Data
		$v_{\rm BO} = v_{\rm B} = \omega_{\rm BO} \times OB = 31.42 \times 0.15 = 4.713 \text{ m/s}$	
		(Perpendicular to BO)	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 Mark for each of Space, Velocity & Acc. Diagram
		(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.	

Q. No.	Sub Q.	Answer	Marking Scheme
4	N. (b)	 (i) Linear velocity of the midpoint of connecting rod : By measurement, we find that v_D = vector od = 4.1 m/s Ans. (ii) Angular acceleration of connecting rod at a crank angle of 45° from inner 	01
		dead centre position: Angular acceleration of the connecting rod From the acceleration diagram, we find that $a_{AB}^t = 103 \text{ m/s}^2$ (By measurement) We know that angular acceleration of the connecting rod AB , $\alpha_{AB} = \frac{a_{AB}^t}{BA} = \frac{103}{0.6} = 171.67 \text{ rad/s}^2$ (Clockwise about B) Ans.	01
4	(c)	 Draw the profile of cam operating a knife edge follower from following data: (i) Follower to move outwards through 40 mm during 60° of cam rotation. (ii) Follower dwells for next 45°. (iii) Follower to return to its original position during next 90°. (iv) Follower to dwell for rest of the rotation. The displacement of follower is to take place with simple harmonic motion during both outward and return strokes. The least radius of cam is 50 mm. if the cam rotates at 300 	06
		rpm. (02 Marks for Displacement Diagram, 04 Marks for Cam Profile) Given Data: Lift (S) = 40 mm Outward Stroke (θo) = 60° Dwell (θ _D) = 45° Return Stroke (θ _R) = 90°. Base Radius of Cam (R) = 50 mm 0 = 40 mm 0	02

Q. No.	Sub Q.	Answer	Marking Scheme
	N.		Selleme
4	(c)	RED T T T T T T T T T T T T T T T T T T T	04
5		Attempt any TWO of the following: (2 x 6)	12
5	(a)	Two parallel shafts whose centre lines are 4.8 m apart are connected by open belt drive. The diameter of larger pulley is 1.5 m and that of smaller pulley 1 m. the initial tension in the belt when stationary is 3 KN. The mass of the belt is 1.5 Kg/m length. The coefficient of friction between belt and pulley is 0.3. Taking centrifugal tension in to account, calculate power transmitted when smaller pulley rotates at 400 rpm.	06
	Ans.	Given Data: Open Belt Drive: Where, $C = 4.8 \text{ m}$ $D_1 = 1.5 \text{ m}$ $D_2 = 1 \text{ m}$ $N_2 = 400 \text{ rpm}$ $\text{Ti} = 3 \text{ KN} = 3 \times 10^3 \text{ N}$ m = 1.5 Kg/m length $\mu = 0.3$ Considering Centrifugal Tension (Tc) = mV ² [1] We know that, Velocity (V) of the Open Belt Drive; $\gamma = \frac{\pi d_2 \cdot N_2}{60} = \frac{\pi \times 1 \times 400}{60} = 21 \text{ m/s}$	01 Mark for Given Data

Q.	Sub	Answer	Marking
No.	Q.		Scheme
5	N. (a)	[2] Centrifugal Tension in Belt (Tc),	
		$(T_c) = mV^2 = 1.5 \times (21)^2 = 661.5 \text{ N}$	
		[3] We know that initial tension in Belt (T _i) as,	01 Mark for T _c & T _i
		Let, T ₁ = Tension in Tight Side (N)	Calculation
		T_2 = Tension in Slack Side (N)	
		$=\frac{T_1 + T_2 + 2T_C}{2}$	
		$T_i = \frac{2}{2}$	
		$3000 \times 2 = T_1 + T_2 + 2 \times (661.5)$	
		$T_1 + T_2 = 4677 \text{ N}$ Eq. [1]	
		[4] For an Open Belt Drive,	
		$r_1 - r_2$ $d_1 - d_2$ $1.5 - 1$ 0.0521 r_2 20	01 Mark for
		$\sin \alpha = \frac{r_1 - r_2}{x} = \frac{d_1 - d_2}{2x} = \frac{1.5 - 1}{2 \times 4.8} = 0.0521$ or $\alpha = 3^{\circ}$	ά&θ
		So, angle of lap on the smaller pulley is;	Calculation
		$\theta = 180^{\circ} - 2 \alpha = 180^{\circ} - 2 \times 3^{\circ} = 174^{\circ}$	
		$= 174^{\circ} \times \pi / 180 = 3.04$ rad	
		[5] We know that relation between $T_1 \& T_2$ is;	
		$2.3 \log \left(\frac{T_1}{T_2}\right) = \mu \cdot \theta = 0.3 \times 3.04 = 0.912$	02 Marks for
			02 Marks for T ₁ & T ₂
		$\log\left(\frac{T_1}{T_2}\right) = \frac{0.912}{2.3} = 0.3965 \text{ or } \frac{T_1}{T_2} = 2.5$ E1. [2]	Calculation
		From Eq.1 and Eq. 2 , we get,	
		$T_1 = 3341 \text{ N}$; and $T_2 = 1336 \text{ N}$	
		[6] Power transmitted by Belt (P),	
		$P = (T_1 - T_2) v = (3341 - 1336) 21 = 42\ 100 \text{ W} = 42.1 \text{ kW}$	01 Mark for Calculation of
		Answer: Power Transmitted by Belt = 42.1 KW	Power (P)

Q. No.	Sub Q.	Answer	Marking Scheme
5	N. (b)	A 4-bar mechanism has following dimensions: /(DA) = 300 mm, /(CB) = /(AB) = 360mm, /(DC) = 600 mm. the link 'DC' is fixed. The angle ADC is 60 ^o . The driving link 'DA' rotates at a speed of 100 rpm clockwise and constant driving torque is 50 N-m. Calculate the velocity of point 'B' and angular velocity of driven link 'CB'.	06
	Ans.	Given Data: DA = 300 mm = 0.3 m T _A = 50 N-m	01 Mark for
		ω _{AD} = 2 π x 100 /60 = 10.47 rad/sec.	Given Data
		Velocity of A w.r.t. D (V _{AD}); $v_{AD} = v_A = \omega_{AD} \times DA = 10.47 \times 0.3 = 3.14 \text{ m/s}$ Perpendicular to DA	
		Velocity of Point B: [1] Since the link <i>DC</i> is fixed, therefore points d and c are taken as one point in the velocity diagram. Draw vector da perpendicular to <i>DA</i> , to some suitable scale, to represent the velocity of <i>A</i> with respect to <i>D</i> or simply velocity of A (i.e. V_{AD} or V_A) such that,	01 Mark for Calculation of V _{AD and} V _B
		Vector $da = V_{AD} = V_A = 3.14 \text{ m/s}$ [2] Now from point a, draw vector ab perpendicular to <i>AB</i> represents the velocity of <i>B</i>	
		with respect to A (i.e. V_{BA}), and from point c draw vector <i>cb</i> perpendicular to <i>CB</i> to represent the velocity of <i>B</i> with respect to <i>C</i> or simply velocity of B (i.e. V_{BC} or V_B). The Vectors ab and cb intersect at b.	02 Marks for Space & Vector Diagram
		[3] By measurement, we find that velocity of point B, $V_B = V_{BC} = vector \ cb = 2.25 \text{ m/s}$	Diagrain
		A V_A C (a) Space diagram. (b) Velocity diagram.	

[4] Angular Velocity of driven link CB Since CB = 360 mm =0.36 m, therefore angular velocity of the driven link CB, $\omega_{\text{DC}} = \frac{v_{\text{BC}}}{2.25} = 6.25 \text{ rad/s}$ (Clockwise about C)	Schem e 02 Marks for ω _{BC} 06
Since $CB = 360 \text{ mm} = 0.36 \text{ m}$, therefore angular velocity of the driven link CB , $\omega_{BC} = \frac{v_{BC}}{BC} = \frac{2.25}{0.36} = 6.25 \text{ rad/s}$ (Clockwise about C) Explain the following terms of centrifugal governor with neat sketch: (i) Height of Governor (ii) Equilibrium Speed (iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor: The second	02 Marks for ω _{BC} 06 1.5
$\omega_{BC} = \frac{v_{BC}}{BC} = \frac{2.25}{0.36} = 6.25 \text{ rad/s} \text{ (Clockwise about C)}$ Explain the following terms of centrifugal governor with neat sketch: (i) Height of Governor (ii) Equilibrium Speed (iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor: T	Marks for ω _{BC} 06 1.5
Explain the following terms of centrifugal governor with neat sketch: (i) Height of Governor (ii) Equilibrium Speed (iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor: T	for ω _{BC} 06 1.5
Explain the following terms of centrifugal governor with neat sketch: (i) Height of Governor (ii) Equilibrium Speed (iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor: T	06
(i) Height of Governor (ii) Equilibrium Speed (iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor: T h	1.5
(ii) Equilibrium Speed (iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor:	1.5
(iii) Sleeve Lift (1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor: T h	
(1.5 Marks for Sketch, 1.5 Marks for significance of each term) Terms related with Governor:	
Terms related with Governor:	
h	
h	Mark
h	
h	
$\mathbf{F}_{\mathbf{c}}$	
\mathbf{F}_{c}	
Sleeve	
r	
	1.5
\mathbf{W}	Mark
	1.5
	Mark
· · · · · · · · · · · · · · · · · · ·	
(i) Height of Governor:	4 -
	1.5 Mark
It is the vertical distance from the centre of the ball to a point where the axes of the arms (or	Walk
arms produced) intersect on the spindle axis. It is usually denoted by h as shown in figure.	
arms produced) intersect on the spindle axis. It is usually denoted by h as shown in figure. (ii) Equilibrium Speed:	
arms produced) intersect on the spindle axis. It is usually denoted by h as shown in figure.	
	(ii) Equilibrium Speed: It is the speed at which the governor balls, arms etc. are in complete equilibrium & the sleeve

	·	-					
		(iii) Sleeve Lift:					
		It is the vertical distance w	which the sleeve travels du	ue to change in equilibrium sp	beed.		
6		Attempt any TWO of the	following: (2 x 6)			12	
6	(a)	Two pulleys one 450 mm	diameter and the other 2	200 mm diameter are on par	allel shafts 1.95		
		m apart and are connect	ed by a crossed belt. Fir	nd the length of belt require	ed and angle of	06	
		contact between belt an	d each pulley. Estimate	the power transmitted by	belt when the		
		larger pulley rotates at 20	00 rpm. If the maximum	tension in the belt is 1 KN an	d coefficient of		
		friction between belt and	pulley is 0.25.				
6	(a)	Given Data:					
		Crossed Belt Drive					
		D ₁ = 450 mm = 0.45 m	D ₂ =200 mm = 0.20 m	C = 1.95 m		01	
		N ₁ = 200 rpm	μ = 0.25	T ₁ = T _{max} = 1 KN = 1000 N		Mar	
		L _{Cross} = ?				for	
						Give	
		[1] We know that speed of the Belt is;					
		- 1 - 11	0.45 200				
		$v = \frac{\pi d_1 N_1}{\pi} =$	$\frac{\pi \times 0.45 \times 200}{60} = 4.714$ m/s	1		01	
		60	60			Mar	
		[2] Length of the Crossed	Belt Drive (L _{Cross});			for	
		$(a,b,a)^2$				Spee	
		$L = \pi (r_1 + r_2) + 2x + \frac{(r_1 + r_2)^2}{x}$					
		<i>x</i>					
		$= \pi (0.225 + 0.1) + 2 \times 1.95 + \frac{(0.225 + 0.1)^2}{1.95} = 4.975 \mathrm{m}$					
		$= \frac{1.95}{1.95} = 4.975$ m					
		[3] Angle of Contact between belt and each pulley;					
		<i>n</i> +	$r_{\rm b} = 0.225 \pm 0.1$			L _{Cross}	
		$\sin \alpha = \frac{r_1 + r_2}{x} = \frac{0.225 + 0.1}{1.95} = 0.1667$ or $\alpha = 9.6^{\circ}$					
		$\theta = 180^{\circ} + 2 \alpha = 180^{\circ} + 2 \times 9.6^{\circ} = 199.2^{\circ}$					
		• • • • • •		//-			
		- 199	$0.2 \times \frac{\pi}{180} = 3.477$ rad Ans.				
		- 199	$\frac{1}{180} = 5.477$ rad $\frac{1}{180}$				
		[4] Power transmitted by	/ Belt;			01	
			,			Mar	
		Let, T2 = Tensi	on in Slack side of the bel	t		for (
		We know that,					
		$2.3 \log \left(\frac{T_1}{T_2}\right) =$	$\mu.\theta = 0.25 \times 3.477 = 0.8692$				
		$\log\left(\frac{T_1}{T_1}\right) =$	$\frac{0.8692}{2.2} = 0.378$ or $\frac{T_1}{T_1} = 2.3$	(Taking antilog of 0.378)			
		$\left(T_{2}\right)$	2.3 T ₂	/			
						01	

		$T_2 = \frac{T_1}{2.387} = \frac{1000}{2.387} = 419$ N	Mark for T ₂
6	(a)	Power transmitted by belt (P) is; $P = (T_1 - T_2) \times V$ = (1000 - 419) 4.714 = 2740 W = 2.74 kW Answers: $L_{Cross} = 4.975 m$ $\Theta_S = 3.477 rad.$ $P = 2.74 KW$	01 Mark for P
6	(b)	Draw the constructional details diagram of Centrifugal clutch. Explain its working principle.	06
	Ans.	(03 Marks for neat labeled sketch, 03 Marks for Working principle in brief)	03 Marks for neat labeled sketch
		Centrifugal clutch.	
		Working Principle of Centrifugal Clutch: The centrifugal clutch uses <i>centrifugal force</i> , instead of spring force for keeping it in engaged position. Also, it does not require clutch pedal for operating the clutch. The clutch is operated automatically depending upon the engine speed. The vehicle can be stopped in gear without stalling the engine. Similarly the vehicle can be started in any gear by pressing the accelerator pedal. This makes the driving operation very easy. OR	03 Marks for Approp riate principl e of workin g

Q.	Sub	Answer	Marking
No.	Q.		Scheme
6	N. (b)	The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a number of shoes on the inside of a rim of the pulley, as shown in Fig. The outer surface of the shoes is covered with a friction material. These shoes, which can move radially in guides, are held against the boss (or spider) on the driving shaft by means of	
		springs. The springs exert a radially inward force which is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially outward force (i.e. centrifugal force). The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A little consideration will show that when the centrifugal force is less	
		than the spring force, the shoe remains in the same position as when the driving shaft was stationary, but when the centrifugal force is equal to the spring force, the shoe is just floating. When the centrifugal force exceeds the spring force, the shoe moves outward and comes into contact with the driven member and presses against it. The force with which the shoe presses against the driven member is the difference of the	
		centrifugal force and the spring force. The increase of speed causes the shoe to press harder and enables more torque to be transmitted.	
6	(c)	The weights of four masse A, B, C, D are 200 Kg, 300 Kg, 240 Kg and 260 Kg respectively. The corresponding radii of rotation are 200 mm, 150 mm, 250 mm and 300 mm respectively and the angle between successive masses are 45°, 75° and 135°. Find the position and magnitude of the balance weight required if its radius of rotation is 200 mm.	06
	Ans.	Given Data: (Either solve by Analytical Or Graphical Method) Given : $m_1 = 200 \text{ kg}$; $m_2 = 300 \text{ kg}$; $m_3 = 240 \text{ kg}$; $m_4 = 260 \text{ kg}$; $r_1 = 0.2 \text{ m}$; $r_2 = 0.15 \text{ m}$; $r_3 = 0.25 \text{ m}$; $r_4 = 0.3 \text{ m}$; $\theta_1 = 0^\circ$; $\theta_2 = 45^\circ$; $\theta_3 = 45^\circ + 75^\circ = 120^\circ$; $\theta_4 = 45^\circ + 75^\circ + 135^\circ = 255^\circ$; $r = 0.2 \text{ m}$	01 Mark for Given Data
		240 kg 0.15 m 0.25 m 120° 45° 0.2 m 0.2 m 200 kg 0.3 m 260 kg	02 Mark for Space Diagram
		Figure: Space Diagram	

N.6(c)Let $m = \text{Balancing mass, and}$ $\theta = \text{The angle which the balancing mass makes with } m_1$. Since the magnitude of centrifugal forces are proportional to the product of each mass and its radius, therefore $m_1 \cdot r_1 = 200 \times 0.2 = 40 \text{ kg-m}$ $m_2 \cdot r_2 = 300 \times 0.15 = 45 \text{ kg-m}$ $m_3 \cdot r_3 = 240 \times 0.25 = 60 \text{ kg-m}$ $m_4 \cdot r_4 = 260 \times 0.3 = 78 \text{ kg-m}$ (a) Analytical Method: Resolving $m_1 \cdot r_1$, $m_2 \cdot r_2$, $m_3 \cdot r_3$ and $m_4 \cdot r_4$ horizontally, $\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ $= 40 + 31.8 - 30 - 20.2 = 21.6 \text{ kg-m}$ Now resolving vertically, $\Sigma I' = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ O3 N Calcing Mathematical constraints and the state of t	Marking
6 (c) Let $m = \text{Balancing mass, and}$ $\theta = \text{The angle which the balancing mass makes with } m_1$. Since the magnitude of centrifugal forces are proportional to the product of each mass and its radius, therefore $m_1 \cdot r_1 = 200 \times 0.2 = 40 \text{ kg-m}$ $m_2 \cdot r_2 = 300 \times 0.15 = 45 \text{ kg-m}$ $m_3 \cdot r_3 = 240 \times 0.25 = 60 \text{ kg-m}$ $m_4 \cdot r_4 = 260 \times 0.3 = 78 \text{ kg-m}$ [a] Analytical Method: Resolving $m_1 \cdot r_1 \cdot \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ = 40 + 31.8 - 30 - 20.2 = 21.6 kg-m Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ = 0 + 31.8 + 52 - 75.3 = 8.5 kg-m $\therefore \text{ Resultant}, R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	Scheme
Since the magnitude of centrifugal forces are proportional to the product of each mass and its radius, therefore $m_1 \cdot r_1 = 200 \times 0.2 = 40 \text{ kg-m}$ $m_2 \cdot r_2 = 300 \times 0.15 = 45 \text{ kg-m}$ $m_3 \cdot r_3 = 240 \times 0.25 = 60 \text{ kg-m}$ $m_4 \cdot r_4 = 260 \times 0.3 = 78 \text{ kg-m}$ (a) Analytical Method: Resolving $m_1 \cdot r_1$, $m_2 \cdot r_2$, $m_3 \cdot r_3$ and $m_4 \cdot r_4$ horizontally, $\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ = 40 + 31.8 - 30 - 20.2 = 21.6 kg-m Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ = 0 + 31.8 + 52 - 75.3 = 8.5 kg-m $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2 / r = 23.2 / 0.2 = 116 \text{ kg}$ Ans. and $\tan \theta = \Sigma V / \Sigma H = 8.5 / 21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
proportional to the product of each mass and its radius, therefore $m_1 \cdot r_1 = 200 \times 0.2 = 40 \text{ kg-m}$ $m_2 \cdot r_2 = 300 \times 0.15 = 45 \text{ kg-m}$ $m_3 \cdot r_5 = 240 \times 0.25 = 60 \text{ kg-m}$ $m_3 \cdot r_3 = 240 \times 0.25 = 60 \text{ kg-m}$ $m_4 \cdot r_4 = 260 \times 0.3 = 78 \text{ kg-m}$ [a] Analytical Method: Resolving $m_1 \cdot r_1 \cdot m_2 \cdot r_2 \cdot m_3 \cdot r_3$ and $m_4 \cdot r_4$ horizontally, $\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ = 40 + 31.8 - 30 - 20.2 = 21.6 kg-m Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ = 0 + 31.8 + 52 - 75.3 = 8.5 kg-m $\therefore \text{Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2 / r = 23.2 / 0.2 = 116 \text{ kg}$ Ans. and $\tan \theta' = \Sigma V / \Sigma H = 8.5 / 21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
(a) Analytical Method: $m_{2} \cdot r_{2} = 300 \times 0.15 = 45 \text{ kg-m}$ $m_{3} \cdot r_{3} = 240 \times 0.25 = 60 \text{ kg-m}$ $m_{4} \cdot r_{4} = 260 \times 0.3 = 78 \text{ kg-m}$ (a) Analytical Method: Resolving $m_{1} \cdot r_{1}, m_{2} \cdot r_{2}, m_{3} \cdot r_{3}$ and $m_{4} \cdot r_{4}$ horizontally, $\Sigma H = m_{1} \cdot r_{1} \cos \theta_{1} + m_{2} \cdot r_{2} \cos \theta_{2} + m_{3} \cdot r_{3} \cos \theta_{3} + m_{4} \cdot r_{4} \cos \theta_{4}$ $= 40 \cos 0^{\circ} + 45 \cos 45^{\circ} + 60 \cos 120^{\circ} + 78 \cos 255^{\circ}$ $= 40 + 31.8 - 30 - 20.2 = 21.6 \text{ kg-m}$ Now resolving vertically, $\Sigma V = m_{1} \cdot r_{1} \sin \theta_{1} + m_{2} \cdot r_{2} \sin \theta_{2} + m_{3} \cdot r_{3} \sin \theta_{3} + m_{4} \cdot r_{4} \sin \theta_{4}$ $= 40 \sin 0^{\circ} + 45 \sin 45^{\circ} + 60 \sin 120^{\circ} + 78 \sin 255^{\circ}$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^{2} + (\Sigma V)^{2}} = \sqrt{(21.6)^{2} + (8.5)^{2}} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2 / r = 23.2 / 0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5 / 21.6 = 0.3935 \text{ or } \theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ} \text{ Ans.}$	
$m_{3} \cdot r_{3} = 240 \times 0.25 = 60 \text{ kg-m}$ $m_{4} \cdot r_{4} = 260 \times 0.3 = 78 \text{ kg-m}$ [a] Analytical Method: Resolving $m_{1} \cdot r_{1}, m_{2} \cdot r_{2}, m_{3} \cdot r_{3} \text{ and } m_{4} \cdot r_{4} \text{ horizontally},$ $\Sigma H = m_{1} \cdot r_{1} \cos \theta_{1} + m_{2} \cdot r_{2} \cos \theta_{2} + m_{3} \cdot r_{3} \cos \theta_{3} + m_{4} \cdot r_{4} \cos \theta_{4}$ $= 40 \cos 0^{\circ} + 45 \cos 45^{\circ} + 60 \cos 120^{\circ} + 78 \cos 255^{\circ}$ $= 40 + 31.8 - 30 - 20.2 = 21.6 \text{ kg-m}$ Now resolving vertically, $\Sigma V = m_{1} \cdot r_{1} \sin \theta_{1} + m_{2} \cdot r_{2} \sin \theta_{2} + m_{3} \cdot r_{3} \sin \theta_{3} + m_{4} \cdot r_{4} \sin \theta_{4}$ $= 40 \sin 0^{\circ} + 45 \sin 45^{\circ} + 60 \sin 120^{\circ} + 78 \sin 255^{\circ}$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^{2} + (\Sigma V)^{2}} = \sqrt{(21.6)^{2} + (8.5)^{2}} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ} \text{ Ans.}$	
$m_4 \cdot r_4 = 260 \times 0.3 = 78 \text{ kg-m}$ [a] Analytical Method: Resolving $m_1 r_1, m_2 r_2, m_3 r_3$ and $m_4 r_4$ horizontally, $\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ = 40 + 31.8 - 30 - 20.2 = 21.6 kg-m Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ = 0 + 31.8 + 52 - 75.8 Kg-m \therefore Resultant, $R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2$ or $m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935$ or $\theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
[a] Analytical Method: Resolving m_1r_1 , m_2r_2 , m_3r_3 and m_4r_4 horizontally, $\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ = 40 + 31.8 - 30 - 20.2 = 21.6 kg-m Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ = 0 + 31.8 + 52 - 75.3 = 8.5 kg-m \therefore Resultant, $R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}}$ We know that $m \cdot r = R = 23.2$ or $m = 23.2/r = 23.2/0.2 = 116 \text{ kg}$ Ans. and $\tan \theta' = \Sigma V \cdot \Sigma H = 8.5/21.6 = 0.3935$ or $\theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg. $\theta = 180^\circ + 21.48^\circ = 201.48^\circ$ Ans.	
Resolving $m_1 \cdot r_1$, $m_2 \cdot r_2$, $m_3 \cdot r_3$ and $m_4 \cdot r_4$ horizontally, $\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ $= 40 + 31.8 - 30 - 20.2 = 21.6 \text{ kg-m}$ Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana \therefore Resultant, $R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2$ or $m = 23.2/r = 23.2/0.2 = 116 \text{ kg}$ Ans. and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935$ or $\theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ$ Ans.	
$\Sigma H = m_1 \cdot r_1 \cos \theta_1 + m_2 \cdot r_2 \cos \theta_2 + m_3 \cdot r_3 \cos \theta_3 + m_4 \cdot r_4 \cos \theta_4$ $= 40 \cos 0^\circ + 45 \cos 45^\circ + 60 \cos 120^\circ + 78 \cos 255^\circ$ $= 40 + 31.8 - 30 - 20.2 = 21.6 \text{ kg-m}$ Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
$= 40 \cos 0^{\circ} + 45 \cos 45^{\circ} + 60 \cos 120^{\circ} + 78 \cos 255^{\circ}$ $= 40 + 31.8 - 30 - 20.2 = 21.6 \text{ kg-m}$ Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^{\circ} + 45 \sin 45^{\circ} + 60 \sin 120^{\circ} + 78 \sin 255^{\circ}$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ} \text{ Ans.}$	
= 40 + 31.8 - 30 - 20.2 = 21.6 kg-m Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant R from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
Now resolving vertically, $\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2 / r = 23.2 / 0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5 / 21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	
$\Sigma V = m_1 \cdot r_1 \sin \theta_1 + m_2 \cdot r_2 \sin \theta_2 + m_3 \cdot r_3 \sin \theta_3 + m_4 \cdot r_4 \sin \theta_4$ $= 40 \sin 0^\circ + 45 \sin 45^\circ + 60 \sin 120^\circ + 78 \sin 255^\circ$ $= 0 + 31.8 + 52 - 75.3 = 8.5 \text{ kg-m}$ $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^\circ$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ \text{ Ans.}$	3 Marks for Iculation of
$= 40 \sin 0^{\circ} + 45 \sin 45^{\circ} + 60 \sin 120^{\circ} + 78 \sin 255^{\circ}$ = 0 + 31.8 + 52 - 75.3 = 8.5 kg-m Ana $\therefore \text{ Resultant, } R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{ or } m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{ or } \theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ} \text{ Ans.}$	Magnitude
Ana $\therefore \text{Resultant}, R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2 \text{or} m = 23.2/r = 23.2/0.2 = 116 \text{ kg Ans.}$ and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935 \text{or} \theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ} \text{ Ans.}$	nd Direction
∴ Resultant, $R = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(21.6)^2 + (8.5)^2} = 23.2 \text{ kg-m}$ We know that $m \cdot r = R = 23.2$ or $m = 23.2/r = 23.2/0.2 = 116 \text{ kg}$ Ans. and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935$ or $\theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ}$ Ans.	by nalytically.
We know that $m \cdot r = R = 23.2$ or $m = 23.2/r = 23.2/0.2 = 116$ kg Ans. and $\tan \theta' = \Sigma V / \Sigma H = 8.5/21.6 = 0.3935$ or $\theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ}$ Ans.	
and $\tan \theta' = \Sigma V / \Sigma H = 8.5 / 21.6 = 0.3935$ or $\theta' = 21.48^{\circ}$ Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^{\circ} + 21.48^{\circ} = 201.48^{\circ}$ Ans.	
Since θ' is the angle of the resultant <i>R</i> from the horizontal mass of 200 kg, therefore the angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ$ Ans.	
angle of the balancing mass from the horizontal mass of 200 kg, $\theta = 180^\circ + 21.48^\circ = 201.48^\circ$ Ans.	
OR	
OR	
OR	

Q.	Su	Answer	Marking
No	b		Scheme
•	Q. N.		
6	(c)	[b] Graphical Method: Now draw the vector diagram with the above values, to some suitable scale, as shown in Fig (b). The closing side of the polygon ae represents the resultant force. By mea- surement, we find that ae = 23 kg-m.	02 Marks for Space Diagram
		240 kg 0.15 m 0.25 m 120° 0.25° 0.2 m 200 kg 0.2 m 200 kg 78	02 Marks for Vector Diagram
		m 0.3 m 260 kg (a) Space diagram. (b) Vector diagram	01 Marks for Calculatio n of Magnitude
		 The balancing force is equal to the resultant force, but <i>opposite</i> in direction as shown in Fig. 21.6 (a). Since the balancing force is proportional to <i>m.r</i>, therefore m × 0.2 = vector ea = 23 kg-m or m = 23/0.2 = 115 kg Ans. By measurement we also find that the angle of inclination of the balancing mass (m) from the horizontal mass of 200 kg, 	by Graphicall