MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code 22409

Page 1 of 20

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code 22409

Page 2 of $\mathbf{2 0}$

Q No.		Answer	Marking
1		Attempt any FIVE of the following	10
1	a	Average velocity: It is the ratio of volumetric flow rate to the cross sectional area of the pipe	2
1	b	Critical velocity: It is the velocity at which the flow changes from laminar to transition.	2
1	c	Different flow meters used in chemical industry: Orifice meter, venturimeter, rotameter, pitot tube	$1 / 2$ mark each
1	d	Schedule number: Definition: They are American Standard Association designation for classifying the strength of the pipe. It indicates the wall thickness of the pipe.	1 1
1	e	Minimum fluidization velocity: Fluidization is the balance of gravity, drag and buoyant forces. The minimum velocity at which fluidization occurs is the minimum fluidization velocity.	2
1	f	Application of gear pump: It is used for the transportation of viscous liquids.	2
1	g	Eg of incompressible fluid (any one) Water, sodium chloride solution, sugar solution Eg of compressible fluid (any one) Oxygen, nitrogen, carbon dioxide (any gas)	1
2		Attempt any THREE of the following	12
2	a	Newton's law of viscosity :	

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page $\mathbf{3}$ of $\mathbf{2 0}$
It states that the shear stress on a layer of fluid is directly proportional to the rate of shear.

Derivation:

Consider two layer of fluid ' y ' cm apart as shown in fig. Let the area of each of these layer be Acm^{2}. Assume that top layer is moving parallel to the bottom layer at a velocity $\mathrm{ucm} / \mathrm{s}$ relative to the bottom layer. To maintain this motion i.e. the velocity ' u ' and to overcome the fluid friction between these layers, for any actual fluid, a force of ' F ' dyne is required.

Experimentally it has been found that the force F is directly proportional to the velocity u and area A and inversely proportional to the distance y .
Therefore, mathematically it becomes

$$
\mathrm{F} \propto u . \mathrm{A} / \mathrm{y}
$$

Introducing a proportionality constant μ,

$$
\begin{aligned}
\mathrm{F} & =\mu \mathrm{uA} / \mathrm{y} \\
\mathrm{~F} / \mathrm{A} & =\mu \mathrm{u} / \mathrm{y}
\end{aligned}
$$

Shear stress , τ equal to F/A between any two layers of fluid may be expressed as

$$
\tau=\mathrm{F} / \mathrm{A}=\mu . \mathrm{u} / \mathrm{y}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code 22409

Page 4 of 20

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code 22409

Page 5 of 20
The H-Q curve shows the relationship between head and capacity rate. it is
clear from the curve that the head decreases continuously as the discharge rate
is increased. The optimum conditions for operation are those at which the
ordinate through the point of maximum efficiency cuts the head curve. The
point A is called as duty point.
The head corresponding to zero or no discharge is known as the shut off head
of the pump. From H -Q curve, it is possible to determine whether the pump
will handle the necessary quantity of liquid against a desired head or not and
the effect of increase or decrease of head. The $P_{\mathrm{B}} \mathrm{Q}$ curve gives us an idea
regarding the size of motor required to operate the pump at the required
conditions and whether or not motor will be overloaded under any other
operating conditions. The η-Q curve shows the relationship between pump
efficiency and capacity. It is clear from η-Q curve that efficiency rises rapidly

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code 22409

Page 6 of $\mathbf{2 0}$

		with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls.	
3		Attempt any THREE of the following	12
3	a	Equation of continuity: Statement: It is law of conservation of mass applicable for flowing fluid. It states that mass flow rate of fluid flowing through a stream tube is conserved. In other words, mass flow rate of fluid entering the stream tube is equal to mass flow rate of fluid leaving the stream tube. Mathematically : $\begin{equation*} m=\rho U A \doteq \text { constant } \tag{1} \end{equation*}$ For cross stream tube of varying cross section, it can be written as $\dot{m}=\rho_{1} U_{1} A_{1}=\rho_{2} U_{2} \dot{A}_{2}=\rho_{3} U_{3} A_{3=} \text { constant }$ For incompressible fluid, above equation can be used to calculate volumetric flow rate or velocity through various cross sections. Let schematic sketch is represented as Let Mass flow rate across section 1-1 is : $\dot{m_{1}}$ Mass flow rate across section 2-2 is : \dot{m}_{2} As per continuity equation, $\dot{m_{1}}=\dot{m}_{2}$	Statemen t 1 mark Schemati c sketch : 1 mark Mathema tical manipula tion : 2marks

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 7 of 20

		Substituting , the expression using eq.(1) and after simplification, we can prove Mass flow rate of fluid $=$ constant.	
3	b	Derivation of Bernoulli's equation: Statement : For steady, irrotational flow of incompressible and ideal fluid, total energy associated with flowing fluid is conserved. Schematic sketch is as shown below Assumptions made: 1. Velocity is constant over the entire cross sectional area. 2. No pump work. 3. Frictional losses are negligible Consider a flow of fluid through a pipe of cross sectional area A. Let 1. PA is the force acting on the fluid at entrance. 2. $(\mathrm{P}+\mathrm{dP}) \mathrm{A}$ is force acting on fluid at exit of fluid. 3. U is the velocity of flowing fluid at entrance 4. $(U+d U)$ is the velocity at exit.	Assumpti on and definition of various energy terms : 2 marks, Substituti on and final expressio $\mathrm{n}: 2$ marks

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page $\mathbf{8}$ of $\mathbf{2 0}$
5. Z is elevation from datum at entrance
6. $\mathrm{Z}+\mathrm{dZ}$ is Elevation at the exit
7. Compoment of gravity force acting along the direction of flow : mgcos θ
8. Rate of change of momentum : $\dot{m}((\mathrm{U}+\mathrm{dU})-(\mathrm{U}))=\dot{m} d U$

As it is not possible to measure mass flow rate of flowing fluid easily, we can write, $\quad \dot{m}=\rho U A$
Applying the Newtons second law of motion assuming incompressible fluid, we can write,
Net force acting on fluid = rate of change of momentum
$\mathrm{PA}-(\mathrm{P}+\mathrm{dP}) \mathrm{A}-\rho \mathrm{AdLg} \cos \theta=\rho . \mathrm{UA} d \mathrm{U}$

$$
-\mathrm{dPA}-\rho \mathrm{AdLg} \cos \theta \quad=\rho \mathrm{UA} \mathrm{dU}
$$

$\mathrm{dPA}+\rho \mathrm{AdLg} \cos \theta+\rho \mathrm{UAdU}=0$
Eq.I
Dividing each term of eq.I by AdL ρ we get

$$
\frac{d P}{\rho d L}+g \cos \theta+\frac{U d U}{d L}=0
$$

As $\cos \theta=\frac{d Z}{d L}$,we can write
$\frac{1}{\rho} \frac{d P}{d L}+g \frac{d Z}{d L}+u \frac{d U}{d L}=0$ Eq.II
$\frac{1}{\rho} \frac{d P}{d L}+g \frac{d Z}{d L}+\frac{d\left(\frac{U^{2}}{2}\right)}{d L}$
Which can be written as
$\frac{d P}{\rho}+g \cdot d Z+d\left(\frac{U^{2}}{2}\right)=0$
Eq.III is called Bernoulli Equation. It is differential form of the Bernoulli

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code 22409

Page 9 of 20

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code 22409

Page 10 of $\mathbf{2 0}$

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Taking force balance at common point \(\mathrm{X}-\mathrm{X}\) \\
Pressure acting on left limb \(=\) Pressure acting on right limb
\[
P_{a}+P_{S}+h_{w} \rho g=P_{a}+h_{m} \rho_{m} g
\] \\
Where \(P_{a}\) : Atmospheric pressure \(\left(\mathrm{N} / \mathrm{m}^{2}\right)\) \\
\(P_{S}:\) System pressure \(\left(\mathrm{N} / \mathrm{m}^{2}\right)\) \\
\(h_{w}\) : Height of water column(m) \\
\(h_{m}\) : Height of mercury column (m) \\
\(\rho:\) Density of water \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\) \\
\(\rho_{m}\) : Density of mercury column \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\) \\
g : gravitational acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\) \\
Substituting values in above equation we get,
\[
\begin{aligned}
\& 101325+P_{S}+0.05 \times 1000 \times 9.81=101325+0.06 \times 13600 \times 9.81 \\
\& \boldsymbol{P}_{\boldsymbol{S}}: \mathbf{7 5 1 4 . 4 6} \mathbf{~ N} / \mathbf{m}^{\mathbf{2}}
\end{aligned}
\]
\end{tabular} \& 1

2

\hline 4 \& b \& $$
\begin{aligned}
& \mathrm{Q}=301 / \mathrm{s}=30 * 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& \text { Kinematic viscosity }: \vartheta=1.2 \times 10^{-4} \frac{\mathrm{~m} 2}{\mathrm{~s}} \\
& \text { Diameter of pipe }: \mathrm{D}: 0.075 \mathrm{~m}
\end{aligned}
$$ \&

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code 22409
Page 11 of 20

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code 22409
Page 12 of 20

		Flow rate Efficiency	Owing to higher pressure, flow rate is higher. It depends upon design and type. Typically between 50 to 90%	Flowrate is lower compared to compressor It depends upon design and type. Typically between 60 to 80%	
4	e	Diagram of 31 Foot ypative	entrifugal pump: Discharge lenes Pressurb gauge		Sketch: 2 marks Labeling: 2 marks

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code 22409

Page 13 of 20

		OR	
5		Attempt any TWO of the following	12
5	a	Data: Density of acetic acid $=1060 \mathrm{~kg} / \mathrm{m}^{3}$ Viscosity of acetic acid $=0.0025 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 14 of $\mathbf{2 0}$

		Volumetric flow rate of acetic acid $=Q=0.02 \mathrm{~m}^{3} / \mathrm{s}$ Inside diameter of pipe $=\mathrm{D}=0.075 \mathrm{~m}$ Area of pipe $=\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi / 4(0.075)^{2}=\mathbf{4 . 4 1 8} \times \mathbf{1 0}^{-3} \mathbf{m}^{2}$ Average velocity of acid through pipe $=u=Q / A$ $\mathrm{u}=\frac{0.02}{4.418 \times 10^{-3}}=4.53 \mathrm{~m} / \mathrm{s}$ To calculate pressure drop, we need to calculate the value of Reynolds no. \& hence friction factor $\begin{aligned} & \mathrm{N}_{\mathrm{Re}}=\frac{D . u \rho}{\mu} \\ & \mathrm{~N}_{\mathrm{Re}}=\frac{0.075 \times 4.53 \times 1060}{0.0025}=\mathbf{1 4 4 0 5 4} \end{aligned}$ As $\mathrm{N}_{\mathrm{Re}}>4000$,flow is turbulent Friction factor for turbulent flow $\quad f=\frac{0.078}{\left(N_{R e}\right)^{0.25}}$ $\begin{aligned} & f=\frac{0.078}{(144054)^{0.25}}=\mathbf{0 . 0 0 4} \\ & \qquad \Delta P=\frac{4 f \rho L u^{2}}{2 D} \\ & \Delta P=\frac{4 \times 0.004 \times 1060 \times 70 \times(4.53)^{2}}{2 \times 0.075}=\mathbf{1 6 2 4 1 6 . 0 8} \frac{\mathrm{N}}{\mathrm{~m}^{2}}=\mathbf{1 6 2 . 4 1 6} \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \end{aligned}$	2
5	b	$\begin{aligned} & \mathrm{D}_{1}=100 \mathrm{~cm}=1 \mathrm{~m} \\ & \mathrm{D}_{2}=50 \mathrm{~cm}=0.5 \mathrm{~m} \\ & \mathrm{P}_{\mathrm{A}}=3 \mathrm{kgf} / \mathrm{cm}^{2}=294199 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{\mathrm{B}}=? \\ & \mathrm{Z}_{\mathrm{A}}=0 \mathrm{~m} \text { (assumed as datum level) } \\ & \mathrm{Z}_{\mathrm{B}}=30 \mathrm{~m} \end{aligned}$	

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code
 22409

Page 15 of 20

		$\mathrm{Q}=0.08 \mathrm{~m}^{3} / \mathrm{s}$ Frictional loss $=\mathrm{hf}=0$ Let us calculate velocities at point A and point B Area at point A,$=A_{A}=\pi / 4\left(D_{1}\right)^{2}=\pi / 4(1)^{2}=\mathbf{0 . 7 8 5} \mathbf{m}^{2}$ Area at point $\mathrm{B}, A_{B}=\pi / 4\left(D_{2}\right)^{2}=\pi / 4(0.5)^{2}=\mathbf{0 . 1 9 6 3} \mathbf{m}^{2}$ $\begin{gathered} \mathrm{U}_{\mathrm{A}}=\mathrm{Q} / \mathrm{A}_{\mathrm{A}}=\frac{0.08}{0.785}=0.1 \mathrm{~m} / \mathrm{s} \\ \mathrm{U}_{\mathrm{B}}=\mathrm{Q} / \mathrm{A}_{\mathrm{B}}=\frac{0.08}{0.1963}=\mathbf{0 . 4} \mathbf{~ m} / \mathrm{s} \end{gathered}$ As per Bernoulli's equation, Total energy at point $\mathrm{A}=$ Total energy at point B (neglecting frictional losses) $\begin{aligned} & \frac{P_{A}}{\rho}+\frac{u_{A}^{2}}{2}+g Z_{A}=\frac{P_{B}}{\rho}+\frac{u_{B}^{2}}{2}+g Z_{B} \\ & \frac{294199}{1000}+\frac{0.1^{2}}{2}+0=\frac{P_{2}}{1000}+\frac{0.4^{2}}{2}+9.81 * 3 \\ & P_{B}=\mathbf{2 6 4 5 9 8} \mathbf{N} / \mathbf{m}^{2}=\mathbf{2 . 6 9 8 1} \mathbf{k g} / \mathbf{c m}^{2} \end{aligned}$	3
5	c	Single acting reciprocating pump: Diagram:	3

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 16 of $\mathbf{2 0}$

		Working Reciprocating pump consists of a piston or plunger which reciprocates in stationary cylinder. Suppose the piston is initially at extreme left position and when crank rotates through 180°, piston moves to extreme right position. Therefore due to outward movement of piston, a partial vacuum is created in cylinder, which enables the atmospheric pressure acting on the liquid surface in the sump below to force the liquid up the suction pipe \& fill the cylinder by forcefully opening the suction valve (it is called as a suction stroke).When the crank rotates through further 180°, piston moves inwardly from its extreme right position towards left. The inward movement of piston causes the pressure of liquid in the cylinder to rise above atmospheric pressure, because of which the suction valve closes \& delivery valve opens .The liquid is then forced up the delivery valve \& raised to the required height.(Delivery stroke).		
6		Attempt any TWO of the following		12
6	a	Data: Diameter of pipe $=\mathrm{D}=75 \mathrm{~mm}=0.075 \mathrm{~m}$ Diameter of throat $=D_{T}=25 \mathrm{~mm}=0.025 \mathrm{~m}$ Density of water $=\rho_{\mathrm{H} 2 \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Density of mercury $=\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$ Coefficient of venturimeter $=\mathrm{C}_{\mathrm{v}}=0.98$ $\Delta \mathrm{h}=$ Difference in levels in mercury manometer $=10 \mathrm{~cm}=0.1 \mathrm{~m}$ The flow equation of venturimeter $Q=\frac{C_{v} A_{T} \sqrt{2 * g * \Delta H}}{\sqrt{1-\beta^{4}}}$ Area of throat $=A_{T}=\pi / 4 * D_{T}^{2}=\pi / 4 *(0.015) 2=\mathbf{1 . 7 6 7} \times 10^{-4} \mathbf{m}^{2}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 17 of $\mathbf{2 0}$

		$\beta=\frac{\mathrm{DT}}{D}=0.015 / 0.025=\mathbf{0 . 6}$ $\Delta H=$ Difference in levels in terms of water $\Delta H=\Delta h \frac{\left(\rho_{H g}-\rho_{H 2 O}\right)}{\rho_{H 2 O}}=0.1 \frac{(13600-1000)}{1000}=\mathbf{1 . 2 6} \mathbf{~ m} \text { of water }$ The flow equation becomes $Q=\frac{0.98 * 1.767 \times 10-4 \sqrt{2 * 9.81 * 1.26}}{\sqrt{1-0.6^{4}}}=9.23 * 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$	2 2
6	b	Data: Water flow rate $(Q)=8 \mathrm{~m}^{3} / \mathrm{hr}=8 / 3600=\mathbf{0 . 0 0 2 2 2} \mathrm{m}^{3} / \mathrm{s}$ Diameter of pipe: $\mathrm{D}=50 \mathrm{~mm}=0.05 \mathrm{~m}$ Area of pipe $=\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi / 4(0.05)^{2}=\mathbf{1 . 9 6 3}^{*} \mathbf{1 0}^{-3} \mathbf{m}^{\mathbf{2}}$ Let's find out the velocity of water through discharge pipe $\mathrm{u}_{2}=\mathrm{Q} / \mathrm{A}=\frac{0.00222}{1.963 \times 10-3}=\mathbf{1 . 1 3 1 ~ m} / \mathbf{s}$ Bernoulli's equation for pump work is $\frac{P_{1}}{\rho}+\frac{\alpha_{1} \cdot u_{1}^{2}}{2}+g Z_{1}+\eta W_{p}=\frac{P_{2}}{\rho}+\frac{\alpha_{2} u_{2}^{2}}{2}+g Z_{2}+h_{f}$ $P_{1}=P_{2}=101.325 \mathrm{kN} / \mathrm{m} 2$ as both open to atmosphere $\alpha_{1 .}=\alpha_{2}$. $u_{1}=$ Negligible as compared to velocity at station 2 $\mathrm{u}_{2}=1.131 \mathrm{~m} / \mathrm{s}$ $Z_{1}=$? $Z_{2}=5 \mathrm{~m}$ $\eta=1$	2

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
22409
Page 18 of 20

		$\begin{array}{r} \dot{m} W_{p}=\text { Power developed by pump }=94 \mathrm{~W}=94 \mathrm{~J} / \mathrm{s} \\ \dot{m}=\rho \mathrm{Q}=1000 * 0.00222=\mathbf{2 . 2 2 k g} / \mathbf{s} \\ W_{p}=\frac{94}{2.22}=\mathbf{4 2 . 3 4 ~ J} / \mathbf{k g} \\ \eta W_{p}=1 * 42.34=42.34 \mathrm{~J} / \mathrm{kg} \end{array}$ By putting $P_{1}=P_{2}$ and $u_{1}=0$ Bernoulli's equation becomes $\begin{aligned} & g Z_{1}+\eta W_{p}=g Z_{2}+\frac{u_{2}^{2}}{2}+h_{f} \\ & 9.81 * Z_{1}+42.34=9.81 * 5+\frac{(1.131)^{2}}{2}+2.5 \\ & 9.81 * Z_{1}+42.34=52.18 \\ & Z_{1}=9.849 / 9.81=1.004=\mathbf{1} \mathbf{~ m} \end{aligned}$	2
6	c	Steam Jet Ejector Diagram	3 marks for diagram and 3 marks for working

Subject title: Fluid Flow Operation \quad Subject code 22409
Page 19 of 20

Working:

An ejector has two inlets: one to admit the motive fluid, usually steam (inlet 1), and the other to admit the gas/vapor mixture to be evacuated or pumped (inlet 2). Motive steam, at high pressure and low velocity, enters the inlet 1 and exits the steam nozzle at design suction pressure and supersonic velocity, entraining the vapor to be evacuated into the suction chamber through inlet 2. The nozzle throat diameter controls the amount of steam to pass through the nozzle at a given pressure and temperature. The entrained gas/vapor flow and the motive fluid (steam) flow mix while they move through the converging section of the diffuser, increasing pressure and reducing velocity. The velocity of this mixture is supersonic and the decreasing cross sectional area creates an overall increase in pressure and a decrease in velocity. The steam slows down and the inlet gas stream picks up speed and, at some point in the throat of the diffuser, their combined flow reaches the exact speed of sound. A stationary, sonic-speed shock wave forms there and produces a sharp rise in absolute pressure. Then, in the diverging section of the diffuser, the velocity of the mixture is sub-sonic and the increasing cross sectional area increases the pressure but further decreases the velocity.

OR

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code
 22409

Page $\mathbf{2 0}$ of $\mathbf{2 0}$
An ejector is a pumping device. It has no moving parts. Instead, it uses a fluid
or gas as a motive force. Very often, the motive fluid is steam and the device is
called a "steam jet ejector." Basic ejector components are the steam chest,
nozzle, suction, throat, diffuser and the discharge. Steam at about 7 atm is
admitted to a converging-diverging nozzle, from which it issues at supersonic
velocity into a diffuser cone. The air or other gas to be moved is mixed with
the steam in the first part of the diffuser, lowering the velocity to acoustic
velocity or below. In the diverging section of the diffuser, the kinetic energy
of the mixed gas is converted to pressure energy so that the mixture can be
discharged directly to atmosphere.

