MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **1** of **16**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STAT

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **2** of **16**

Q	No.	Answer	Marking
			scheme
	1	Attempt any FIVE of the following	10
1	a	System:	
		It is the part of the universe which is set apart for the process to takes place.	1
		Surroundings:	
		The part of the universe outside the system and separated from the system by	
		boundaries is called surroundings.	1
1	b	Open system:	
		Systems which can exchange both mass and energy across the boundaries are	1
		known as open system.	
		Closed system:	
		Systems that can exchange energy with the surroundings but which cannot	1
		transfer mass across the boundaries are known as closed system.	
1	c	Zeroth law of thermodynamics:	
		It states that if body A is in thermal equilibrium with body B and B is in	2
		thermal equilibrium with body C, then C is also in thermal equilibrium with A.	
1	d	Sign convention used for work done:	2
		W is positive when work is done by the system and W is negative when work	
		is done on the system.	
1	e	Relation between C _p and C _v for ideal gas:	2
		$C_p - C_v = R$	
1	f	Formula to calculate Vander Waals constant in Vander Waals equation:	
		Vander Waals equation is $\left(P + \frac{a}{V^2}\right)$ (V-b) = RT	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **3** of **16**

		Where a and b are constants.	
		$a = \frac{27R^2 T_C^2}{64P_C}$	1
		_	1
		and $b = \frac{RT_C}{8P_C}$	
		where T_c and P_c are critical temperature and critical pressure respectively.	
1	g	Equation for calculating entropy change during isothermal mixing of	2
		ideal gases.	
		\blacksquare = -R \blacksquare inx _i where x _i is the mole fraction of i th component in the gas	
		mixture and R is the universal gas constant.	
2	•	Attempt any THREE of the following	12
2	a	Extensive property:	1
		If the property of the system depend on the quantity of matter present in the	
		system, then it is known as extensive property.	
		Eg Volume, mass.	1
		Intensive property:	
		If the property of the system does not depend on the quantity of matter present	1
		in the system, then it is known as intensive property.	
		Eg. Temperature, Pressure.	1
2	b	Internal energy is a state function:	4
		Consider a system undergoing a series of changes from state 1 to state 2 along	
		OPECINE DEFINED RECENSED ENGINEERS AND COMPANIED SELECTION DEFINED FOR THE COMPANIED SELECTION DEFINED.	
		If the surrounding remain unchanged, the change in internal energy 👪 along	
		ENGRESO EGGED SO BOSINOSMENE SENERGIOS DE SOS ENGRES EN BOS EN BOS EN BOS ES EN BOS EN	
		the other hand, if	
		would be a residuum of energy resulting from cyclic process. Energy would	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **4** of **16**

		have been created without the loss of an equivalent amount of another kind,	
		which is in contrast to the first law of thermodynamics. As per first law,	
		ENGINEERINE ENGINEERINE ENGINEERINE PORCERO ENGINEO ENGINE CONTROL BOOK PORTO ENERGIA ENGINEERINE GOVERO ASSESSABILITA ASSESSABI	
		means that internal energy accompanying a given change of state depends only	
		on the end state and not on the path followed. ie internal energy is a state	
		function.	
		Pressure	
2	c	Work done on the system = - 1678J/S	1
		Heat given out to the surroundings = -3400kJ/ hour = -3400* 1000/ 3600	
		= -944.44 J/S	1
		From first law of thermodynamics,	
		= 733.56 J/S	2
2	d	Let T ₁ , T ₂ and T be the temperature of hot water, cold water and the final	
		temperature of the mixture respectively. Let m ₁ and m ₂ be the mass of hot	
		water and cold water respectively.	
		$T_1 = 375K$ $T_2 = 275 K$	
		$m_1 = 10 \text{ kg} \qquad m_2 = 30 \text{kg}$	
		C_p of water = 4.2kJ/ kg K	
		Heat lost by hot water = Heat gained by cold water	
	1		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **5** of **16**

	1							
		$m_1C_p(T_1-T)$ hot water = $m_2C_p(T-T_2)$ cold water.						
		10 * 4.2* (375) = 30* 4.2* (T-275)						
		T = 300K						
		Let \mathbb{S}_1 be the entropy change of hot water and \mathbb{S}_2 be the entropy change of						
		cold water.						
		$\mathbb{E}_{1} = m_{1} \int_{T_{1}}^{T} C_{P \frac{dT}{T}} = m_{1} C_{P} \ln \frac{T}{T_{1}} = 10* 4.2 * \ln(\frac{300}{375}) = -9.37 \text{ kJ / K}$						
		$\mathbb{IS}_1 = m_2 \int_{T_2}^T C_{P\frac{dT}{T}} = m_2 C_P \ln \frac{T}{T_2} = 30 * 4.2 * \ln(\frac{300}{275}) = 10.96 \text{kJ/K}$						
		Total entropy change = $\mathbb{S}_1 + \mathbb{S}_2 = -9.37 + 10.96 = 1.593 \text{ kJ/K}$	2					
3		Attempt any THREE of the following	12					
3	a	Criteria for thermal, mechanical, chemical and thermodynamic						
		equilibrium: Thermal equilibrium: A system is said to be in thermal equilibrium if there is	1					
		no flow of heat from one portion of system to another. The temperature						
		remains uniform or unchanged throughout the system. In thermal equilibrium						
		there is no thermal gradient within the system and there is no temperature						
		difference between system and its surrounding.						
		Mechanical equilibrium: A system is said to be in mechanical equilibrium if	1					
		there is no imbalance of forces within the system. The pressure is uniform						
		throughout the system or there are no unbalanced forces within the system. In						
		mechanical equilibrium there is no pressure difference or unbalanced forces						
		between two interacting systems.						
		Chemical equilibrium: A system is said to be in chemical equilibrium if the						
		composition of components present in the system is uniform throughout the	1					
		system. The concentration or chemical potential remains constant throughout	-					
	1							

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **6** of **16**

		the system. In chemical equilibrium there is no tendency for the chemical	
		reaction to occur when the system is isolated.	
		Thermodynamic equilibrium. If a system is simultaneously in state of	1
		thermal equilibrium, mechanical equilibrium and chemical equilibrium, then it	
		is said to be in state of thermodynamic equilibrium.	
3	b	Data:	
		$P_1 = 0.1 \text{ MPa}$ $T_1 = 300 \text{ K}$	
		$V_2 = V_1 / 15$ $n = 1.2$	
		$PV^n = constant$	
		$P_1 V_1^n = P_2 V_2^n$	
		$0.1 * V_1^{1.2} = P_2 (V_1 / 15)^{1.2}$	2
		$P_2 = 0.1 * 15^{1.2} = 2.578 \text{ M Pa.}$	
		$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}}$	
		$\frac{T_2}{300} = \left(\frac{2.578}{0.1}\right)^{\frac{0.2}{1.2}}$	2
		$T_2 = 515.63 K$	
3	c	Equation for entropy change of an ideal gas in terms of temperature and	
		volume:	
		From first law of thermodynamics, $dU = dQ \mathbb{R}dW$	
		SOURCE SO	
		60 60 60 60 60 60 60 60 60 60 60 60 60 6	
		dW = PdV	
		For ideal gas dU= n C _v FOED TO	
		Substituting ii,iii and iv in i	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **7** of **16**

		$TdS = n C_v dT + PdV$	2
		$dS = \frac{n CvdT}{T} + \frac{PdV}{T}$	
		For ideal gas $P = \frac{nRT}{V}$	
		Substituting $dS = \frac{n CvdT}{T} + \frac{nRdV}{V}$	
		Integrating between limits (Assuming C _v is independent of temperature)	
		$\int_{S_1}^{S_2} dS = nC_v \int_{T_1}^{T_2} \frac{dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V}$	2
		$ = nC_{v} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} $	2
3	d	n = 2 moles	
		C_p of water = 4.2 kJ/kg K = 4.2*18 *1000 / 1000 = 75.6 J / mol K	
		C_p of steam = 1.9 kJ/kg K = 1.9*18*1000/ 1000 = 34.2 J / mol K	
		IIII vaporization = $2257 \text{ kJ/ kg} = 2257*18*1000 / 1000 = 40626 \text{ J/mole}$	
		Water at 273 K to steam at 473K.	
		Entropy change when 2 moles of water at 273K is heated to water at 373K	
		$\mathbf{R}_1 = \mathbf{n} \int_{T_1}^{T_2} C_{P \ liquid} \frac{dT}{T} = \mathbf{n} C_{p \ water} \ln(T_2 / T_1)$	1
		= $2*75.6 * ln(373 / 273) = 47.19 J / K$	1
		Entropy change when 2 moles of water at 373K is converted to steam at 373K	
		$\mathbf{E}_2 = \mathbf{n} * \frac{\mathbf{F}_{Vaporization}}{T_b} = 2 * 40626 / 373 = \mathbf{217.83 J / K}$	1
		Entropy change when 2 moles of steam at 373K is heated to steam at 473K	
		$\mathbf{S}_3 = \mathbf{n} \int_{T_1}^{T_2} C_{P Vapour} \frac{dT}{T} = \mathbf{n} C_{p steam} \ln(T_2 / T_1)$	
		= $2*34.2*\ln(473/373)$ = $16.25 J/K$	1
		Total entropy change = $[1]_1 + [1]_2 + [1]_3$	
		= $47.19 + 217.83 + 16.25 = 281.27 \text{ J/K}$	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **8** of **16**

4		Attempt any THREE of the following	12
4	a	EN RECEDERE SE SHEDEN SAMPES IN H	
		The phase rule states that number of degree of freedom in a physical system at	
		equilibrium is equal to the number of components in the system minus the	
		number of phases plus the constant 2. Mathematically, it is stated as follows:	2
		F = C where C is the number of components, P is the number if phases	
		in thermodynamic equilibrium with each other and F is the number of degrees	
		of freedom or variance of the system.	
		Degree of freedom for a binary mixture of benzene and toluene in	
		equilibrium with its own vapour	
		C=2	2
		P=2	
		F = C + 2 = 2 + 2 = 2	
4	b	Reaction is $CO + \frac{1}{2}O_2$	
		Entropy of CO = 198 J/ mol K	
		Entropy of $O_2 = 205.2 \text{ J/mol K}$	
		Entropy of $CO_2 = 213.8 \text{ J/mol K}$	
		EO EO EGUGUGUBANEO EO EO BO EOEBOEDEN EO EO EO EO EGUGUGUBAN EO EO EO EO EGUGUGUBAN EO	
		products = 213.8 J/mol K	1
		\blacksquare reactants = 198 + (205.2 / 2) = 300.6 J / mol K	1
		reaction = $213.8 - 300.6 = 86.8 \text{ J / mol K}$	2
4	c	Entropy change during isothermal mixing is R ln 2	
		When two distinct intermingling ideal gases are mixed, the resulting entropy	
		change is given by $ = -1999 $ $ \ln x_i $	2
		The given mixture is an equimolar mixture of two distinct ideal gases,	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **9** of **16**

		therefore $x_i = 0.5$	
		$ = -\mathbb{I} \mathbb{I} n x_i = -R(0.5 \ln 0.5 + 0.5 \ln 0.5) $	
		= -R $\ln 0.5$ = -R $\ln (1/2)$ = R $\ln 2$	2
4	d	OB O	
		E O EN EN EN ENCENDEM E EN ESTE EN	
		EG EG EGGEGGEGGGGEGGGGGGGGGGGGGGGGGGGG	
		E E E E E E E E E E	
		At equilibrium there is no	
		$\begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{o} \mathbf{g} \mathbf{o} & \mathbf{e} \mathbf{o} & \mathbf{e} \mathbf{o} & \mathbf{e} \mathbf{o} \end{bmatrix} = \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{o} & \mathbf{e} \mathbf{o} \end{bmatrix} = \begin{bmatrix} \mathbf{e} \mathbf{o} & \mathbf{e} \mathbf{o} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{o} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{o} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \end{bmatrix} \begin{bmatrix} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e}$	
		591 59 59 59 59 59 59 59 59 59 59 59 59 59	
		FOR BORN BY BY BY + RT lnpi	2
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$+RT \ln p_{\rm B}$	
		RT ln $(\frac{p_R^r}{p_A^o} \frac{p_S^s}{p_B^b})$ = $(a \mu_A^0 + b \mu_B^0)$ - $(r \mu_R^0 + s \mu_S^0)$	
		= - 0%5 16 4042639455946 55 16 4259199191919191919	
		= - E0 E0 F6060668808080 55 F6 Hassiashbarakon	
		$\ln\left(\frac{p_R^r}{p_A^g}\frac{p_S^s}{p_B^b}\right) = \frac{-\Delta G \text{ reaction}}{RT} \qquad \text{But } \left(\frac{p_R^r}{p_A^g}\frac{p_S^s}{p_B^b}\right) = K_p$	
		EN GOENE CE EN	2
4	e	Cadamandures de Bornaciones de Borna	
		Le- The second s	
		equilibrium, then the equilibrium will shift so as to relieve that stress.	
		The stress may be a change in concentration, temperature or pressure.	
		As per this principle, the equilibrium is subjected to a change of concentration,	
		temperature or pressure, the equilibrium in the reaction shifts in the direction	2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

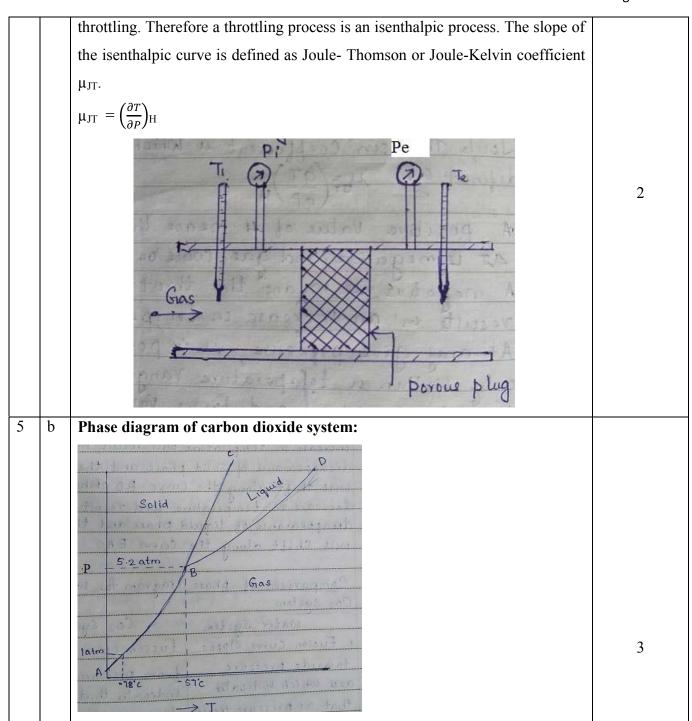
Subject code

22406

Page **10** of **16**

			· ·	
		that tends to nullify the effect of the change.		
		Effect of change in pressure on the dissociation reaction N ₂ O ₄		
		According to Le Chateliers principle, increase in pressure favours the reaction		
		in the direction which takes place with a decrease in the total number of moles.	2	
		Similarly decrease in pressure favours the reaction in the direction which takes	_	
		place with an increase in the total number of moles.		
		For the above reaction, increase in pressure favours the backward reaction		
		since backward reaction is taking place with a decrease in the number of moles		
		and decrease in pressure favours the forward reaction since forward reaction is		
		taking place with an increase in the number of moles (ie more NO ₂ will be		
		formed).		
5	1	Attempt any TWO of the following		
5	a	Joule Thomson porous plug experiment:		
		This experiment is used to measure the change in temperature of a gas when it		
		flows steadily through a porous plug. The apparatus consists of a long,		
		horizontal and insulated pipe at the center of which a porous plug is inserted.		
		On either side of the porous plug, provision is made to measure the		
		temperature and pressure of the flowing fluid.		
		The pipe is insulated, therefore $Q = 0$, no shaft work is involved ,Ws = 0,		
		horizontal apparatus, therefore $Zi = Ze$.		
		Ignore the change in velocity due to the flow through the porous plug,		
		Vi = Ve, therefore $he = hi$.		
		Ie whenever a fluid flows steadily from high pressure to low pressure through	4	
		a porous plug or partially opened valve inserted in a long horizontal and		
		insulated pipe, the enthalpy of fluid remains constant. Such a flow is called		

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **11** of **16**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **12** of **16**

	1	T :						
		It has three distinct phase	es- solid, liqu	id and gas. A	B is the s	sublimation c	eurve	
		along which solid CO ₂ is	s in equilibriu	ım with the ga	as. BD is	the vaporiza	tion	
		curve along which liquid	$1 CO_2$ is in e	quilibrium w	ith the ga	s. BC is the	fusion	
		h						
		other Fusion curve slope	s away from	the pressure a	ixis whic	h indicates th	nat	
		increase in pressure raise	es the melting	g point of soli	d CO ₂ . A	Along all thes	se	
		curves, the system are un	nivariant (deg	gree of freedo	m is 1). E	3 is the triple	point	
		where the three phases o	f CO ₂ coexis	st at equilibriu	ım. The t	emperature a	t this	
		point is -57 ^o C and pressu	are is 5.2 atm	. A slight vari	ation in t	temperature o	or	3
		pressure at this point ma	y result in the	e disappearan	ce of one	of the three		
		phases. A slight increase	in temperatu	re will result	in the dis	sappearance (of	
		solid phase and the equil	ibrium will s	hift along the	curve BI	O while a slig	ght	
		decrease in temperature	will result in	the disappear	ance of li	iquid phase a	nd the	
		equilibrium will shift ald	ong the curve	BA.				
5	c	N ₂ +3H ₂						
		P = 30 atm						
		Let there be 1 mol of N ₂	and 3 mol o	f H ₂ present i	nitially. l	Let x moles of	of NH ₃	
		be produced at equilibrium	ım					
			N ₂	H ₂	NH ₃]	
		Moles present	1	3	0		-	
		initially						
		Moles reacted /	x/2	3x/2	X		-	
		produced at						
		equilibrium						
				l	l .	1	J	2
	•							

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

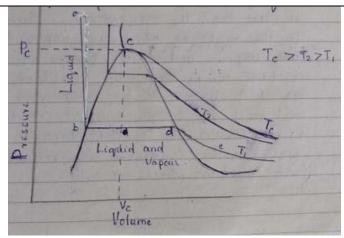
22406

Page **13** of **16**

									1 agc 13 01 10
		Moles present at	1-(x /2)	3-(3x /2)	X	Total			
		equilibrium				moles	=		
						4-x			
		Mole fraction	$\frac{1-\frac{x}{2}}{4-x}$	$\frac{3 - \frac{3x}{2}}{4 - x}$ $30 * \left(\frac{3 - \frac{3x}{2}}{4 - x}\right)$	$\frac{x}{4-x}$				
		Partial pressure	$30*\left(\frac{1-\frac{x}{2}}{4-x}\right)$	$30*\left(\frac{3-\frac{3x}{2}}{4-x}\right)$	$\frac{30x}{4-x}$				
		% of NH ₃ at equilibrium	$\frac{1}{1} = 10\% = 0.1$		<u> </u>	<u> </u>		I	2
		$\frac{x}{4-x} = 0.1$							2
		x = 0.3636							
		Substitute the value of 2	x in the equat	ion for partial	pressure				
		Then $P_{N2} = 6.75$ atm,	$P_{H2} = 20.25a$	$P_{NH3} =$	2.996atm	1			2
		$K_p = \frac{P_{NH3}^2}{P_{N2} P_{H2}^3} = 2.996^2 /$	(6.75 * 20.2	$(5^3) = 1.6014$ *	10 ⁻⁴ atm	-2			
6		Attempt any TWO of t	the following						12
6	a	P-V diagram of water.							
		Consider the thermodyn	amic state of	water represe	nted as a	function	of		
		pressure and volume.							
	1								

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer


Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **14** of **16**

3

change in volume of water with pressure at constant temperature T_1 is along the isotherm a-b-d-e. Since liquid water is almost incompressible, the

ENGIGEDER OF ROBBERGER (FOR ENGINEER ENGINEER) ENGINEER BOOKEN BO

liquid and vapour are in equilibrium. The temperature and pressure remains constant during the phase change as indicated by the horizontal portion of the isotherm b-d. Saturated liquid state is represented by point b and saturated vapour state by point d. The temperature and pressure at which the liquid and vapour phases coexist at equilibrium is called saturation temperature and pressure. Further reduction in pressure increases the volume along the curve d-e. When the pressure over the system is brought down to below saturation pressure at constant temperature (or when the temperature is increased above saturation temperature at constant pressure), the vapour gets superheated. The locus of the saturated phases is represented by the dome shaped curve b-c-d. the area under the dome represents two phase region, the area to the left of the

3

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **15** of **16**

			Page 15 of 16
		curve b-c is the liquid region and the area to the right of the curve c-d is the	
		vapour region. When the temperature of the system is increased to T _c , the	
		critical temperature, the saturated liquid and saturated vapour phases become	
		indistinguishable. The properties of the substance at the critical point are	
		known as critical properties.	
6	b	Mollier diagram	
		The Enthalpy-Entropy diagram is known as Mollier diagram. $\left(\frac{\partial H}{\partial s}\right)_{P} = T.$ This equation forms the basis of Mollier diagram. The	4
		energy requirement in flow process in general and the temperature changes	
		involved in isentropic and isenthalpic processes are easily determined using	
		these charts. The lines of constant T and P shown within the two phase region	
		separates in the vapour region in to pressure lines that rise continuously and	2
		temperature lines that drop and eventually become horizontal. Lines of	
		1	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Engineering Thermodynamics

Subject code

22406

Page **16** of **16**

		constant quality are also shown in the two phase region.						
6	С	Relation between conversion and thermodynamic equilibrium constant						
		for 2 nd order reversible reaction Reaction is 1 1 mole of A and 1 mole of B is present initially.						
		x mole of A reacts at equilibrium						
		P is the total pressure.						
			A	В	R	S		
		Moles present	1	1	0	0		
		initially						
		Moles reacted /	X	X	X	X		
		produced at	A	A	A	A		
								3
		equilibrium	4				m . 1 . 1	3
		Moles present at	1-x	1-x	X	X	Total moles	
		equilibrium					= 2	
		Mole fraction	(1-x)/2	(1-x)/2	x/2	x/2		
		Partial pressure	P(1-x)/2	P(1-x)/2	Px/2	Px/2		
		$K_{p} = \frac{P_{R*P_{S}}}{P_{A*P_{B}}} = \frac{\frac{Px}{2} \frac{Px}{2}}{\frac{P(1-x)}{2} \frac{P(1-x)}{2}} = \frac{x^{2}}{(1-x)^{2}} = \frac{x^{2}}{1-2x+x^{2}}$						
		$K_{p} = \frac{3}{P_{A*P_{B}}} = \frac{\frac{3}{P(1-x)}}{\frac{P(1-x)}{2} + \frac{P(1-x)}{2}} = \frac{1}{(1-x)^{2}} = \frac{1}{1-2x+x^{2}}$						
		$K_p (1-2x+x^2) = x^2$						
		$K_p - 2K_p x + K_p x^2 = x^2$	x^2					
		$K_{\rm p} - 2K_{\rm p} x + K_{\rm p} x^2 - x$	$a^2 = 0$					
		$x^{2}(K_{p}-1)-2K_{p}x+K_{p}=0$						
								3
		$\chi = \frac{2K_P \pm \sqrt{4K_P^2 - 4(K_P - 1)K_P}}{2(k_P - 1)}$						
		2(11)						