22402

12223

4 Hours / 70 Marks

\square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

> Marks

1. Attempt any FIVE of the following: $\mathbf{1 0}$
a) State the types of stresses developed due to eccentric load.
b) Give the relationship between slope, deflection and radius of curvature.
c) State middle third rule.
d) State the boundary conditions for a simply supported beam using deflected shape.
e) State the nature of moment induced due to continuity in beams.
f) Define stiffness factor and distribution factor.
g) State the methods of analysis of frames.
2. Attempt any THREE of the following:
a) Draw the sketch of core of section
i) Rectangular section having dimensions $B \times D$.
ii) Circular section having D as diameter.
b) A hollow circular steel column having external and internal diameter 500 mm and 300 mm respectively carries an eccentric load of 200 kN acting at an eccentricity of 60 mm . Calculate the maximum and minimum stresses developed.
c) A rectangular pier 1.5 m wide and 1 m thick carries a compressive load of 400 kN eccentric about the axis bisecting the thickness. The eccentricity is 0.2 m . Find the resultant stress at the base of pier.
d) A masonry wall 10 m high, 3 m wide and 1.5 m thick is subjected to a wind pressure of $1.2 \mathrm{kN} / \mathrm{m}^{2}$. Find maximum and minimum intensity induced on the base if the unit weight of the masonry is $22 \mathrm{kN} / \mathrm{m}^{3}$. Consider wind is acting on 3 m side.
3. Attempt any THREE of the following:
a) Using standard formulae calculate maximum slope and deflection in terms of EI of a simply supported beams as shown in Figure No. 1.

Figure No. 01.
b) Calculate value of load ' W ' for a fixed beam as shown in Figure No. 02.

Figure No. 02.
c) A fixed beam of span 7 m is subjected to a point load P. Find out position of load if left hand support moment is 2 times that of right hand support moment.
d) State advantages and disadvantages of a fixed beam. State the nature of stresses at supports and at mid-span.
4. Attempt any THREE of the following:
a) A beam ABC is supported at A, B, and $\mathrm{C} . \mathrm{AB}=6 \mathrm{~m}$, $\mathrm{BC}=5 \mathrm{~m} . \mathrm{AB}$ carries a udl of $30 \mathrm{kN} / \mathrm{m}$ and BC carries udl of $25 \mathrm{kN} / \mathrm{m}$. Calculate the support moments. Refer Figure No. 03.

Figure No. 03.
b) A propped cantilever AB of span 4 m is fixed at A and propped at B. Carrying udl of $20 \mathrm{kN} / \mathrm{m}$. Using Clapeyron's theorem calculate support moment and draw BMD. Refer Figure No. 04.

Figure No. 04.
c) Using moment distribution method determine the moments at fixed end of a propped cantilever of span 5 m carrying a udl of $25 \mathrm{kN} / \mathrm{m}$ over entire span.
d) Using moment distribution method calculate the support moment of a beam as shown in Figure No. 05.

Figure No. 05.
e) State the assumptions made in the analysis of simple frame.
5. Attempt any TWO of the following:
a) A cantilever beam $A B C D$ is fixed at A and free at D. It carries udl of $10 \mathrm{kN} / \mathrm{m}$ over AB and a point load of 5 kN at C. $A B=4 \mathrm{~m}, \mathrm{BC}=\mathrm{CD}=2 \mathrm{~m}$. Find the slope and deflection at C in terms of EI. Refer Figure No. 06.

Figure No. 06.
b) Using standard formulae calculate slope and deflection at free end of a cantilever beam as shown in Figure No. 07. having cross section of beam as 100 mm width and 200 mm depth. Use $\mathrm{E}=200 \mathrm{GPa}$.

Figure No. 07.
c) For the continuous beam as shown in Figure No. 08. Find the support moments by three moments theorem and draw BMD and SFD.

Figure No. 08.
6. Attempt any TWO of the following: 12
a) A continuous beam ABCD is fixed at A and supported at B, C and D. Such that $A B=B C=4 \mathrm{~m}$ and $C D=3 \mathrm{~m}$. It carries a udl of $20 \mathrm{kN} / \mathrm{m}$ over the entire length. Using moment distribution method. Calculate support moments and draw BMD showing all important values.
b) Analyse the frame by suitable method, find the forces in the members of BC, BE and FE of the frame as shown below in Figure No. 09.

Figure No. 09.
c) Using method of section, determine the forces in the members FE, FB and CB as shown in Figure No. 10.

Figure No. 10.

