### Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:

# 22333

#### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| (A)      | Attempt any FIVE of the following:                                                              |                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                 | 10- Total<br>Marks                                                                                                                                                                                                                                                                                       |
| (a)      | Write any two applications of Instrumentation System.                                           | 2M                                                                                                                                                                                                                                                                                                       |
| Ans:     | Instrumentation is used to measure many parameters (physical values). These parameters include: | (Any 2<br>correct<br>pt. 2M)                                                                                                                                                                                                                                                                             |
|          | Pressure, either differential or static                                                         |                                                                                                                                                                                                                                                                                                          |
|          | • Flow                                                                                          |                                                                                                                                                                                                                                                                                                          |
|          | Temperature                                                                                     |                                                                                                                                                                                                                                                                                                          |
|          | Levels of liquids, etc.                                                                         |                                                                                                                                                                                                                                                                                                          |
|          | • Density                                                                                       |                                                                                                                                                                                                                                                                                                          |
|          | Viscosity                                                                                       |                                                                                                                                                                                                                                                                                                          |
|          | Ionising radiation                                                                              |                                                                                                                                                                                                                                                                                                          |
|          | Frequency                                                                                       |                                                                                                                                                                                                                                                                                                          |
| <b>A</b> | ns:                                                                                             | <ul> <li>Instrumentation is used to measure many parameters (physical values). These parameters include:</li> <li>Pressure, either differential or static</li> <li>Flow</li> <li>Temperature</li> <li>Levels of liquids, etc.</li> <li>Density</li> <li>Viscosity</li> <li>Ionising radiation</li> </ul> |

BOARD OF TECHNICAL EDUCATION

rtified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

#### SUMMER-19 EXAMINATION

## Model <u>Answer</u>

22333

|      | Current                                                                                                                                    |                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|      | Voltage                                                                                                                                    |                                    |
|      | Inductance                                                                                                                                 |                                    |
|      | Capacitance                                                                                                                                |                                    |
|      | Resistivity                                                                                                                                |                                    |
|      | Chemical composition                                                                                                                       |                                    |
|      | Chemical properties                                                                                                                        |                                    |
|      | Position                                                                                                                                   |                                    |
|      | Vibration                                                                                                                                  |                                    |
|      |                                                                                                                                            |                                    |
| (b)  | Define :                                                                                                                                   | 2M                                 |
|      | (i) Resolution<br>(ii) Accuracy                                                                                                            |                                    |
| Ans: | (i) <b>Resolution:</b> The smallest change in input to which instrument can respond is known as resolution.                                | (1M for<br>each                    |
|      | (ii) Accuracy: It is the degree of closeness with which an instrument reading<br>approaches the true value of the quantity being measured. | definiti<br>n)                     |
|      | (any other relevant definition should also be considered)                                                                                  |                                    |
| (c)  | Sketch Block diagram of vertical deflection system used in CRO.                                                                            | 2M                                 |
| Ans: | PROBE INPUT<br>TIP<br>CONNECTOR<br>SELECTOR<br>GND<br>GND                                                                                  | (2M for<br>correct<br>diagrar<br>) |
|      | BLOCK DIAGRAM OF VERTICAL DEFLECTION SYSTEM                                                                                                |                                    |

rtified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

#### SUMMER-19 EXAMINATION

### Model <u>Answer</u>

22333

| (d)     | Define :                                                                                | 2M                 |
|---------|-----------------------------------------------------------------------------------------|--------------------|
|         | (i) Sensor                                                                              |                    |
|         | (ii) Transducer                                                                         |                    |
|         |                                                                                         |                    |
| Ans:    | (i) Sensor : A device which detects or measures a physical property and record          | ls, (1M fo<br>each |
|         | indicates, or otherwise responds to it.                                                 | definit            |
|         | (ii) <b>Transducer</b> : a device that converts variations in a physical quantity, such | as <b>n)</b>       |
|         | pressure or brightness, into an electrical signal, or vice versa.                       |                    |
| <u></u> | (any other relevant definition should also be considered)                               |                    |
| (e)     | List any four types of transducer.                                                      | 2M                 |
| Ans:    | Types of Transducer based on Quantity to be Measured                                    |                    |
|         | Temperature transducers                                                                 | (1M for<br>each    |
|         | Pressure transducers                                                                    | correct<br>type)   |
|         | Displacement transducers                                                                |                    |
|         | Flow transducers                                                                        |                    |
|         | Types of Transducer based on the Principle of Operation                                 |                    |
|         | Photovoltaic                                                                            |                    |
|         | Piezoelectric                                                                           |                    |
|         | Chemical                                                                                |                    |
|         | Mutual Induction                                                                        |                    |
|         | Electromagnetic                                                                         |                    |
|         | Hall effect                                                                             |                    |
|         | Photoconductors                                                                         |                    |
|         | Types of Transducer based on Whether an External Power Source is required or not        |                    |

**BOARD OF TECHNICAL EDUCATION** 

(ISO/IEC - 2700 rtified)

MAHARASHT

(Autonomous)

# **SUMMER-19 EXAMINATION**

Model Answer

22333

|      | Active Transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|      | Passive Transducer                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| (f)  | State need of level measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2M                |
| Ans: | In almost all industries, vast quantities of liquid such as water solvents, chemicals etc. are used in number of processes. It is widely employed to monitor as well as measure quantitatively the liquid content in the tanks, containers and vessels etc liquid level affects both pressure and rate of flow in and out of the container and therefore its measurement becomes important in a variety of processes encountered in modern manufacturing plants. | (2M fc<br>need)   |
| (g)  | Write objective of Data acquisition system.                                                                                                                                                                                                                                                                                                                                                                                                                      | 2M                |
| Ans: | Objectives of Data Acquisition System:                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|      | It must monitor the complete plant operation to maintain online optimum and safe                                                                                                                                                                                                                                                                                                                                                                                 | (Any 2            |
|      | operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|      | <ul><li>operations.</li><li>It must provide an effective human communication system and be able to identify</li></ul>                                                                                                                                                                                                                                                                                                                                            |                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|      | • It must provide an effective human communication system and be able to identify problem areas, thereby minimizing unit availability and maximizing unit through                                                                                                                                                                                                                                                                                                |                   |
|      | <ul> <li>It must provide an effective human communication system and be able to identify problem areas, thereby minimizing unit availability and maximizing unit through point at minimum cost.</li> <li>It must be able to collect, summarize and store data for diagnosis of operation and</li> </ul>                                                                                                                                                          | correct<br>pt. 2M |

| Q.  | Sub   | Answers                             | Marking            |
|-----|-------|-------------------------------------|--------------------|
| No. | Q. N. |                                     | Scheme             |
| 2   |       | Attempt any THREE of the following: | 12- Total<br>Marks |

## Model <u>Answer</u>

22333

| (a)  | Define any two dynamic characteristics of measurements.                                  | 4M                          |
|------|------------------------------------------------------------------------------------------|-----------------------------|
| Ans: | 1. Speed of response:                                                                    |                             |
|      | The rapidity with which instrument responds to make changes in the measured quantity is  |                             |
|      | called as speed of response.                                                             | (Any 2                      |
|      | 2. Fidelity:                                                                             | correc                      |
|      | The degree to which instrument indicates the change in measured variable without dynamic | pt. 2M<br>each)             |
|      | error is called as fidelity.                                                             | ,                           |
|      | 3. Lag:                                                                                  |                             |
|      | The retardation on delay in the response of an instrument to make the change in measure  |                             |
|      | quantity is known as lag.                                                                |                             |
|      | 4. Dynamic error:                                                                        |                             |
|      | The difference between the true value of a quantity changing with time and the value     |                             |
|      | indicated by the instrument if no static error is assumed is called as dynamic error.    |                             |
| (b)  | Draw PMMC meter movement and describe it.                                                | 4M                          |
| Ans: | Core Coil<br>Core Spring<br>Air Gap                                                      | 2M for<br>labeled<br>diagra |

# Model <u>Answer</u>

# Subject Name: Electronic measurements and instrumentation Subject code:

|     | OR                                                                                             |                         |
|-----|------------------------------------------------------------------------------------------------|-------------------------|
|     | (Any other relevant diagram shall be considered)                                               |                         |
|     | Working principle of PMMC:                                                                     | 2M for<br>explan<br>ion |
|     | 1. The working principle of PMMC is based on basic meter movement known as D'Arsonval          |                         |
|     | principle stated as when current passes through the coil a deflecting torque is produced due   |                         |
|     | to interaction between magnetic field produced by permanent magnet and magnetic field          |                         |
|     | produced by moving coil.                                                                       |                         |
|     | 2. Due to this torque coil deflects and this deflection is proportional to the current flowing |                         |
|     | through the coil.                                                                              |                         |
|     | 3. The pointer attached with coil indicates the magnitude of quantity being measured.          |                         |
|     | 4. Another torque is developed by spring known as controlling torque. This torque helps to     |                         |
|     | stabilize the pointer                                                                          |                         |
|     | 5. When controlling torque becomes equal to deflecting torque then pointer attached with       |                         |
|     | scale become stable at equilibrium.                                                            |                         |
| (c) | Describe the block diagram of function generator.                                              | 4M                      |

## SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:



# SUMMER-19 EXAMINATION Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:



MAHARASHT (Autonomous) (ISO/IEC - 2700

## SUMMER-19 EXAMINATION Model Answer

22333

| The cross section view of C type bourdon tube under normal condition and             |  |
|--------------------------------------------------------------------------------------|--|
| pressurized condition is as shown in figure.                                         |  |
| • The pressure which is to be measured is applied to the bourdon tube through open   |  |
| end. When this pressure enters the tube, the tube tends to straighten out            |  |
| proportional to applied pressure.                                                    |  |
| • This causes the movement of the free end and the displacement of this end is given |  |
| to the pointer through mechanical linkage i.e. geared sector and pinion.             |  |
| • The pointer moves on the calibrated scale in terms of pressure. The relationship   |  |
| between the displacement of the free end and the applied pressure is nonlinear.      |  |
|                                                                                      |  |
|                                                                                      |  |

| Q.<br>No. | Sub<br>Q. N. |                                      |                           | Answers                        |                                 | Marking<br>Scheme |
|-----------|--------------|--------------------------------------|---------------------------|--------------------------------|---------------------------------|-------------------|
| 3         |              | Attempt any THREE of the following : |                           | 12- Total<br>Marks             |                                 |                   |
|           | (a)          | Compare Analo                        | og meter and Digital mete | r.                             |                                 | 4M                |
|           | Ans:         | Sr.No.                               | Parameter                 | Analog meter                   | Digital meter                   | 1M each<br>(any 4 |
|           |              | 1                                    | Principle                 | Meter that gives analog output | Meter that gives digital output | points)           |
|           |              | 2                                    | Accuracy                  | The accuracy is less           | The accuracy is<br>More         |                   |
|           |              | 3                                    | Resolution                | The resolution is less         | The resolution is<br>More       |                   |
|           |              | 4                                    | Power                     | Requires more power.           | Requires less power.            |                   |
|           |              | 5                                    | Cost                      | Analog are cheap               | Digital meter are expensive.    |                   |

# SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

|      | 6                                                  | Observational error                                                        | Have observational error                                                                                       | No observational error         |    |
|------|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|----|
|      | 7                                                  | Examples                                                                   | Potentiometer, DC<br>ammeter, PMMC                                                                             | DMM , DSO                      |    |
| (b)  | Calculate the frequence<br>Lissajous patterns. Ass |                                                                            | br an oscilloscope when<br>equency 15kHz.                                                                      | n shows the following          | 4M |
| Ans: | Channel 1 Frequency                                |                                                                            | v = 3/1                                                                                                        |                                | 4M |
|      | Channel 1 frequency                                | = 3 * 15khz<br>= 45 khz                                                    |                                                                                                                |                                |    |
| (c)  | Sketch and describe th                             | -                                                                          | LVDT.                                                                                                          |                                | 4M |
| Ans: | Diagram                                            |                                                                            |                                                                                                                |                                | 2M |
|      | Displacement                                       | P S2 Displace                                                              | +S1<br>+<br>Difference<br>voltag<br>Vd=(VS1 -                                                                  |                                |    |
|      |                                                    | Construction and Circuit C                                                 |                                                                                                                | entationToday.com              |    |
|      | the core cause the volt reducing the voltage in    | age of any secondary w<br>the other secondary w<br>s the output terminal o | n LVDT any physical dis<br>vinding to increase while<br>inding. The difference of<br>f the transducer and give | e simultaneously<br>of the two | 2M |

BOARD OF TECHNICAL EDUCATION

Subject Name: Electronic measurements and instrumentation Subject code:

rtified)

and a state

MAHARASHT

(Autonomous) (ISO/IEC - 2700

## SUMMER-19 EXAMINATION

## Model <u>Answer</u>

|      | A differential transducer consists of a primary winding and two secondary<br>winding.<br>The windings are arranged concentrically and next to each other.<br>They are wound over a narrow bobbin which is usually of a non- magnetic and<br>insulating material.<br>A core in the shape of road is attached to the transducer sensing a shaft.<br>An AC source is applied across the primary winding and core varies the coupling<br>between it and two secondary windings.<br>.:E0=E1-E2 |    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (d)  | (i) Define signal conditioning system.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4M |
|      | (ii) Draw the circuit diagram of DC signal conditioning circuit.                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Ans: | <ul> <li>(i) Signal conditioning is the manipulation of a signal in a way that prepares it for the next stage of processing. Many applications involve environmental or structural measurement, such as temperature and vibration, from sensors.</li> <li>(ii) Circuit</li> </ul>                                                                                                                                                                                                         | 2M |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2M |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|      | D.C.<br>excitation<br>source                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|      | excitation supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |

| Q.  | Sub   | Answers                              | Marking   |
|-----|-------|--------------------------------------|-----------|
| No. | Q. N. |                                      | Scheme    |
| 4   |       | Attempt any THREE of the following : | 12- Total |

#### Model Answer

22333



#### Model <u>Answer</u>

# 22333



# SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

|     | 3                                                                                  | Range of temperature                                                                                                                                                           | -150°C to 300°C                                                                                                   | -200 oC to 2000 oC                                               |    |
|-----|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----|
|     | 4                                                                                  | Size                                                                                                                                                                           | Small in size                                                                                                     | Large as compared<br>to<br>thermistor                            |    |
|     | 5                                                                                  | Whether active or passive                                                                                                                                                      | Passive                                                                                                           | active                                                           |    |
|     | 6                                                                                  | Transduction principle                                                                                                                                                         | Resistive transducer                                                                                              | Thermo electric<br>effect                                        |    |
| (e) | Draw and desc                                                                      | cribe general Data acquisition                                                                                                                                                 | system .                                                                                                          |                                                                  | 4M |
|     | acronyms DAS                                                                       | y a computer. Data acquisition<br>or DAQ, typically convert analytics                                                                                                          | og waveforms into digita                                                                                          | al values for processing.                                        |    |
|     | parameters to<br>form that can b<br>conditioned se                                 | nts of data acquisition systems<br>electrical signals. Signal condit<br>be converted to digital values.<br>ensor signals to digital values. E<br>software programs developed o | tioning circuitry, to conve<br>Analog-to-digital conver<br>Data acquisition applicati                             | ert sensor signals into a<br>ters, to convert<br>ons are usually |    |
|     | parameters to<br>form that can b<br>conditioned se<br>controlled by s<br>languages | electrical signals. Signal condit<br>be converted to digital values.<br>ensor signals to digital values. D                                                                     | tioning circuitry, to conve<br>Analog-to-digital conver<br>Data acquisition applicati<br>using various general pu | ert sensor signals into a<br>ters, to convert<br>ons are usually | 2M |
|     | parameters to<br>form that can b<br>conditioned se<br>controlled by s<br>languages | electrical signals. Signal condit<br>be converted to digital values.<br>ensor signals to digital values. E<br>software programs developed o                                    | tioning circuitry, to conve<br>Analog-to-digital conver<br>Data acquisition applicati<br>using various general pu | ert sensor signals into a<br>ters, to convert<br>ons are usually | 2M |

## Model <u>Answer</u>

22333

| Sub<br>Q. N. | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marking<br>Scheme                    |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|              | Attempt any TWO of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12- Tota<br>Marks                    |
| (a)          | Describe the need for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6M                                   |
| Ans:         | Calibration is defined as the comparison of measured value with standard.<br>Why required?<br>The accuracy of all measuring devices degrade over time. This is typically caused by normal<br>wear and tear. However, changes in accuracy can also be caused by electric or mechanical<br>shock or a hazardous manufacturing environment (e.x., oils, metal chips etc.).<br>Depending on the type of the instrument and the environment in which it is being used, it<br>may degrade very quickly or over a long period of time.<br>The bottom line is that, calibration improves the accuracy of the measuring device. Accurate<br>measuring devices improve product quality.<br>A measuring device should be calibrated:<br>According to recommendation of the manufacturer.<br>After any mechanical or electrical shock.<br>Periodically (annually, quarterly, monthly) | 6М                                   |
| (b)          | Explain the electro-magnetic flow meter with neat sketch and write it's application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6M                                   |
| Ans:         | Electromagnetic flow meter:<br>Principle of Operation:<br>1. The operation of an Electro-magnetic flow meter is based upon Faraday's Law, which<br>states that the voltage induced across any conductor as it moves at right angles through a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Principl<br>e -1M<br>Diagram<br>-2M |

MAHARASHT (Autonomous) (ISO/IEC - 2700 : tified)

# SUMMER-19 EXAMINATION Model <u>Answer</u>



Subject Name: Electronic measurements and instrumentation Subject code:

### Model <u>Answer</u>

22333

#### 5. This output e.m.f. is collected by the electrodes and is given to external circuit. 6. The e.m.f. or voltages produced are small especially at low flow rates. 7. The pipe must be non-conductive, non-magnetic. Application:-They can usually measure multidirectional flow, either upstream or downstream. It used for measurement extremely low flow rates. It can be also used for measurement of flow rate of slurries, greasy materials. (c) Describe the circuit diagram of AC signal conditioning. 6M The block diagram of a.c. signal conditioning system:-Ans: Calibration Measurand Low Output Phase ac and Bridge Pass Transducer Sensitive Amplifier Zeroing Filter Detector Network Power Supply Carrier Oscillator Diagram-3M Working AC signal conditioning system -3M Working:-This is carrier type a.c. signal conditioning system. The transducer used is variable resistance or variable inductance transducer. The carrier oscillator generates a carrier signal of the frequency of about 50 Hz to 200 kHz. The carrier frequencies are higher and are at least 5 to 10 times the signal frequencies. The bridge output is amplitude modulated carrier frequency signal. The a.c. amplifier is used to amplify this signal. A separate power supply is required for the a.c. amplifier. The amplified signal is demodulated using phase sensitive demodulator. The advantage of using phase sensitive demodulator is that the polarity of d.c. output indicates the direction of the parameter change in the bridge output. Unless and until spurious and noise signals modulate the carrier, they will not affect the data signal quality and till then are not important. Active filters are used to reject mains frequency pick up. This

## SUMMER-19 EXAMINATION Model Answer

22333

| prevents the overloading of a.c. amplifier. Filtering out of carrier frequency components of<br>the data signal is done by phase sensitive demodulator. The applications of such system are<br>in use with variable reactance transducers and for the systems where signals are required to<br>be transmitted through long cables, to connect the transducers to the signal conditioning |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| system.<br>This type of signal conditioning includes the circuits like sample and hold, multiplexers<br>,analog to digital converters etc.                                                                                                                                                                                                                                               |  |

| Q.<br>No. | Sub<br>Q. N. | Ans                                                                                             | wers                                                                                                                                       | Marking<br>Scheme     |
|-----------|--------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 6.        |              | Attempt any TWO of the following :                                                              |                                                                                                                                            | 12- Total<br>Marks    |
|           | (a)          | <ul><li>(i) Compare CRO and DSO.</li><li>(ii) State the formula for phase measurement</li></ul> | nt using CRO with necessary diagram.                                                                                                       | 6M                    |
|           | Ans:         | (i)                                                                                             |                                                                                                                                            |                       |
|           |              | CRO                                                                                             | DSO                                                                                                                                        |                       |
|           |              | Directly reads analog voltage and displays it<br>on screen.                                     | It reads the analog voltage and converts it<br>into digital form before being displayed on<br>the screen.                                  |                       |
|           |              | Do not require ADC, microprocessor and acquisition memory                                       | Requires ADC, microprocessor and acquisition memory                                                                                        |                       |
|           |              | Can only analyze signal in real time as there is no storage memory available.                   | Can analyze signal in real time as well as can<br>analyze previously acquired large samples<br>of data with facility of storage available. | (Any<br>Three-<br>3M) |
|           |              | Can not analyze high frequency sharp rise<br>time transients                                    | Can analyze high frequency transients due<br>to advanced DSP algorithms available and<br>ported on microprocessor which can                |                       |

# Model <u>Answer</u>

22333

| operate on stored samples of input voltage.                                                                                                                                                                                                       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                   |    |
| (ii)Phase measurement using CRO:                                                                                                                                                                                                                  |    |
| The phase measurement can be done by using Lissajous figures.                                                                                                                                                                                     |    |
| The CRO is set to operate in the X- Y mode, then the display obtained on the screen of a CRO is called Lissajous pattern, when two sine waves of the same frequency are applied to the CRO. ( One vertical and one horizontal deflection plates). | 3M |
| Depending on the phase shift between the two signals, the shape of the Lissajous pattern will go on changing.                                                                                                                                     |    |
| The phase shift is given by,                                                                                                                                                                                                                      |    |
| $\Theta = \sin - 1 (A/B)$                                                                                                                                                                                                                         |    |
| A                                                                                                                                                                                                                                                 |    |
| A. The Lissajous pattern will be an ellipse if the sine waves of equal frequency but phase<br>shift between 00 and 900 are applied to the two channels of CRO. The Lissajous<br>pattern will be as shown below-                                   |    |

# SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:



## Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:

| (b)  |                                 | e and application of thermal, optical,<br>n criteria of transducer.                                                                               | magnetic and electric sensor.                                                                                                                                                                                                                                                                                                                                                                                                     | 6M                               |
|------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Ans: | (i)<br>sensor<br>Thermal Sensor | examples<br>• Glass thermometer<br>• Bimetallic<br>thermometer<br>• Thermocouples<br>• Thermister<br>• RTD<br>• pyrometers                        | <ul> <li>application         <ul> <li>The temperature sensors are used in the military/Defence.</li> <li>It can be used in the home automation systems like air conditioners, refrigerators, microwave Owens</li> <li>It can also use in the industries like warehouses, mushroom cultivation.</li> <li>The temperature sensors are used to measure the temperature of the boilers in thermal power plants</li> </ul> </li> </ul> | Any 1e:<br>1M<br>Any 1<br>app-1N |
|      | Optical sensor                  | <ul> <li>Photoelectric<br/>tachometer</li> <li>Optical pyrometers</li> <li>Stroboscope</li> <li>Photoelectric<br/>pressure transducer.</li> </ul> | <ul> <li>Speed measurement</li> <li>Temperature<br/>measurement</li> <li>Pressure<br/>measurement.</li> <li>Optical sensors are<br/>integral parts of<br/>many common<br/>devices, including<br/>computers, copy<br/>machines (xerox)<br/>and light fixtures</li> </ul>                                                                                                                                                           |                                  |

MAHARASHT (Autonomous) (ISO/IEC - 2700

#### SUMMER-19 EXAMINATION

#### Model <u>Answer</u>

22333

## Subject Name: Electronic measurements and instrumentation Subject code:

|                  |                                                                                                                                         | that turn on<br>automatically in the<br>dark.                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magnetic sensor  | <ul> <li>LVDT</li> <li>RVDT</li> <li>Electromagnetic flow meter</li> <li>Inductive pick-up</li> <li>Eddy current tachometer.</li> </ul> | <ul> <li>Linear and angular<br/>displacement<br/>measurement</li> <li>Flow measurement</li> <li>Speed measurement</li> </ul>                                                                          |
| Electric sensors | <ul> <li>Piezo-electric<br/>transducer</li> <li>Resisitive transducer</li> <li>Thermocouple</li> <li>Strain gauge</li> </ul>            | <ul> <li>Pressure<br/>measurement</li> <li>Linear and angular<br/>displacement<br/>measurement</li> <li>Speed measurement</li> <li>Temperature<br/>measurement</li> <li>Strain measurement</li> </ul> |

## (ii) selection criteria of transducer:

- **Operating Principle :** The transducers are selected on the basis of operating principle it may be resistive, inductive, capacitive, optical etc.
- **Operating range :** The range of transducer should be appropriate for measurement to get a good resolution.
- **Accuracy :** The accuracy should be as high as possible or as per the measurement.
- **Range :** The transducer can give good result within its specified range, so select transducer as per the operating range.
- Sensitivity : The transducer should be more sensitive to produce the output or sensitivity should be as per requirement.
   (Any four-
- **Loading effect :** The transducer's input impedance should be high and output **3M)** impedance should be low to avoid loading effect.
- Errors : The error produced by the transducer should be low as possible.
- **Environmental compatibility :** The transducer should maintain input and output characteristic for the selected environmental condition.

OR

1.Operating range

(Autonomous) (ISO/IEC - 2700

#### **SUMMER-19 EXAMINATION**

## Model Answer

22333

|      | 2. Operating principle                                                                                                                                                                                     |                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | 3. Sensitivity                                                                                                                                                                                             |                |
|      | 4. Accuracy                                                                                                                                                                                                |                |
|      | 5. Frequency response and resonant frequency                                                                                                                                                               |                |
|      | 6. Errors                                                                                                                                                                                                  |                |
|      | 7. Environmental compatibility                                                                                                                                                                             |                |
|      | 8. Usage and ruggedness.                                                                                                                                                                                   |                |
|      | 9. Electrical aspect.                                                                                                                                                                                      |                |
|      | 10. Stability and Reliability                                                                                                                                                                              |                |
|      | 11. Loading effect                                                                                                                                                                                         |                |
|      | 12. Static characteristics                                                                                                                                                                                 |                |
|      | 13. General selection criteria                                                                                                                                                                             |                |
| (c)  | (i) State the principle of Humidity measurement using hygrometer.                                                                                                                                          | 6M             |
|      |                                                                                                                                                                                                            |                |
|      | (ii) State the type of humidity measurement and range with it.                                                                                                                                             |                |
|      |                                                                                                                                                                                                            |                |
| Ans: | (i) Principle of Hair hygrometer:-                                                                                                                                                                         |                |
|      | Due to humidity, several materials undergo a change in physical, chemical and electrical properties. This property is used in a transducer designed and calibrated to directly read the relative humidity. |                |
|      |                                                                                                                                                                                                            |                |
|      | Cortain hydrosconic materials, such as hyman hair, animal membranes, wood, namer, etc.                                                                                                                     |                |
|      |                                                                                                                                                                                                            |                |
|      | Certain hygroscopic materials, such as human hair, animal membranes, wood, paper, etc.,                                                                                                                    |                |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding                                                                                                                    |                |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding air. This change in the linear dimension is used as the measurement of the humidity present                        |                |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding                                                                                                                    |                |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding air. This change in the linear dimension is used as the measurement of the humidity present                        |                |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      |                |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | -              |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | Diagrai<br>-2M |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | -2M            |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | -2M            |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | -2M<br>Workir  |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | -2M<br>Workir  |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | -2M<br>Workir  |
|      | undergo changes in the linear dimensions when they absorb moisture from the surrounding<br>air. This change in the linear dimension is used as the measurement of the humidity present<br>in the air.      | Workin         |

rtified)

(Autonomous) (ISO/IEC - 2700

## SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:



## Model <u>Answer</u>

22333

