WINTER- 2018 EXAMINATION

Model Answer
 Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical spelling errors should not be given more Importance Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer			Marking Scheme
1.		Attempt any FIVE of the following:			10 M
	(a)	Define the term of "Accuracy" Ans: Accuracy is the ability of the instrument to measure the accurate value. In other words, it is the closeness of the measured value to a standard or true value.			2M
	(b)	Write feature of PMMC instrument. Ans: - Consumes less power - Great accuracy. - High torque to weight ratio			$\begin{aligned} & \text { 2M(any } \\ & \text { two) } \end{aligned}$
	(c)	State application of logic analyzer. Ans: - Digital systems. - Computer systems - Logic circuits. - Testing complex digital			$\begin{aligned} & \text { 2M(any } \\ & \text { two) } \end{aligned}$
	(d)	Sketch the block diagram of signal generator. Ans:			2M

	(e)	List application of CRO. Ans: - Voltage measurement - Current measurement - Examination of waveform - Measurement of phase and frequency	$\begin{gathered} \text { 2M(any } \\ \text { two) } \end{gathered}$
	(f)	Define the tern null as it applies to bridge measurement. Ans: Null measurements balance voltages so that there is no current flowing through the measuring device and, therefore, no alteration of the circuit being measured. Null measurements are generally more accurate but are also more complex than the use of standard voltmeters and ammeters, and they still have limits to their precision.	2M
	(g)	State specification of digital instruments. Ans: - DC Volts Ranges $200 \mathrm{mV}-1000 \mathrm{~V}$ - DC Current Ranges $200 \mu \mathrm{~A}-200 \mathrm{~mA}$ - Resolution 100 mW - Audible Indication $75 \mathrm{~W} \pm 25 \mathrm{~W}$ - Response Time 100 ms - Overload Protection n 1000 V DC or 750 V AC	2M(any two)
2.		Attempt any THREE of the following:	12 M
	(a)	Describe the different types of errors occurs in measurement. Ans: Generally errors are classified into three types: systematic errors, random errors and blunders. 1) Gross Errors 2) Random Errors 3) Systematic Errors - Instrumental Errors - Environmental Errors - Observational Errors 1) Gross Errors Gross errors are caused by mistake in using instruments or meters, calculating measurement and recording data results. This may be the reason for gross errors in the reported data, and such errors may end up in calculation of the final results, thus deviating results. 2) Random Errors Random errors are caused by the sudden change in experimental conditions and noise and tiredness in the working persons. These errors are either positive or negative. 3) Systematic Errors - Instrumental Errors Instrumental errors occur due to wrong construction of the measuring instruments. These errors may occur due to hysteresis or friction. These types of errors include loading effect and misuse of the instruments. - Environmental Errors The environmental errors occur due to some external conditions of the instrument. External conditions mainly include pressure, temperature, humidity or due to magnetic fields. In order to reduce the environmental errors	4M

		- Observational Errors As the name suggests, these types of errors occurs due to wrong observations or reading in the instruments particularly in case of energy meter reading.	
	(b)	Explain the role of the series resistance connected in PMMC movement. Ans: A PMMC Instrument can be used as voltmeter by just connecting a series resistance with the moving coil. This series resistance is called Voltmeter Multiplier. This combination of moving coil and multiplier is connected across the point whose voltage is to be measured. There are two main function of voltmeter multiplier are 1) It limits the current through the PMMC moving coil to a value less than full scale deflection current and thus prevents moving coil from being damaged. 2) It minimizes the flow of current through the voltmeter and thus do not alter the circuit current whose voltage is to be measured. Ideally the resistance of voltmeter should be infinite.	4M
	(c)	Sketch and describe block diagram of digital frequency meter. Ans: The basic block diagram of basic digital frequency meter (DFM) is shown in above figure. The signal whose frequency we have to be measured is first to be amplified through amplifier. The output of amplifier is applied to the Schmitt trigger. The Schmitt trigger is convert input signal into a square wave which has a fast rise and fall time. The square wave is then differentiated and clipped. Each pulse is proportional to each cycle of unknown signal. Now the output from Schmitt trigger is applied to a start and stop gate. The input pulses are allowed to pass through it, when the gate is open. The counter starts to count these pulses. The gate is closed the output pulses are not allowed to pass through the gate. The counter stops the counting. When the gate is open the number of pulse are counted by the counter. The interval between start and stop condition is the frequency of unknown signal which has to be measured. $\mathrm{F}=\mathrm{N} / \mathrm{t}$ Where, $\mathrm{F}=$ Unknown frequency. $\mathrm{N}=$ Number of counts. $\mathrm{t}=$ Time interval between start and stop condition of the gate.	2M

\begin{tabular}{|c|c|c|c|}
\hline \& (d) \& \begin{tabular}{l}
Describe the operation of whetstone bridge. \\
Ans: \\
A Wheatstone bridge is widely used to measure the electrical resistance. This circuit is built with two known resistors, one unknown resistor and one variable resistor connected in the form of bridge. When the variable resistor is adjusted, then the current in the galvanometer becomes zero, the ratio of two two unknown resistors is equal to the ratio of value of unknown resistance and adjusted value of variable resistance. By using a Wheatstone Bridge the unknown electrical resistance value can easily measure.
\end{tabular} \& 2M

2M

\hline 3. \& \& Attempt any THREE of the following: \& 12 M

\hline \& (a) \& | Sketch and describe operation of half wave rectifier type AC Voltmeter. Ans: |
| :--- |
| Half-wave Rectifier Voltmeter |
| The d'Arsonval meter movement only responds to the average or dc value of the current through the moving coil. In order to measure alternating voltage with d'Arsonval meter, the unidirectional current flow. If a diode D1 is added to the dc voltmeter circuit, then a circuit that is capable of measuring ac voltage is achieved. Therefore, the AC voltmeter produces an output voltage, which is equal to $\mathbf{0 . 4 5}$ times the rms value of the sinusoidal (AC) input voltage signal alternating signal needs to be rectified first by using diode rectifier to produce | \& 2M

2M

\hline \& (b) \& | Explain with sketch operation of ramp type DVM. Ans: |
| :--- |
| This is given to an input comparator which will compare two signals and generates the output. One input to the input comparator is from the input and another input is from the ramp. This input voltage and ramp signal are compared and output is given. If the ramp signal is more than input voltage there will be no output but if the input voltage is greater than the ramp signal then a is generated which will open the gate. Now when the gate gets opened, clock will send clock pulses which are counted by the counter and displayed on the screen. The comparator will compare the ramp signal and ground and output is given. | \& 2M

\hline
\end{tabular}

			2M
4.		Attempt any THREE of the following:	12 M
	(a)	Convert PMMC movement into DC ammeter of the range 0 to 50 mA . Ans: Let, $\mathrm{R}_{\mathrm{s}}=$ Shunt resistance $\mathrm{Rm}=$ Internal resistance of movement $\mathrm{I}=$ total load or circuit current to be measured $R_{s h}=\frac{I_{m} R_{m}}{I-I_{m}}$ Consider $\mathrm{I}_{\mathrm{m}}=1_{\mathrm{m}} \mathrm{A}$ and $\mathrm{R}_{\mathrm{m}}=100 \Omega$ $\begin{gathered} \mathrm{R}_{\mathrm{s}}=\left(1_{\mathrm{m}} \mathrm{~A} * 100\right) / 50_{\mathrm{m}} \mathrm{~A}-1_{\mathrm{m}} \mathrm{~A} \\ \mathrm{R}_{\mathrm{s}}=\left(1_{\mathrm{m}} \mathrm{~A} * 100\right) / 49_{\mathrm{m}} \mathrm{~A} \\ \mathbf{R}_{\mathrm{s}}=\mathbf{2 . 0 4 \Omega} \end{gathered}$	4M
	(b)	Sketch and label equivalent circuit diagram of practical ammeter and voltmeter. Ans: practical ammeter $\mathrm{I}=$ total current flowing in the circuit in Amp. $\mathrm{I}_{\text {sh }}$ is the current through the shunt resistor in Amp. R_{m} is the ammeter resistance in Ohm.	2M

\begin{tabular}{|c|c|c|c|}
\hline \& (e) \& \begin{tabular}{l}
Compare Dual slope DVM and SAR type DVM. (4 points) \\
Ans:
\end{tabular} \& \[
\begin{aligned}
\& \text { 4M(any } \\
\& \text { four) }
\end{aligned}
\] \\
\hline 5. \& \& Attempt any TWO of the following: \& 12 M \\
\hline \& a) \& \begin{tabular}{l}
State the need of calibration and explain the procedure to calibrate the instrument. Ans: \\
Need of calibration: \\
Every measuring device degrades over time due to normal wear and tear. These changes can be caused by various reasons such as electric or mechanical shock or a hazardous manufacturing environment. In those situations, calibration is required to perform on those instruments to enhance the accuracy of the measuring device. Accurate measuring devices increase product quality. Here are the five reasons, why calibrating instruments is important: \\
- Making sure that the instrument is making consistent measurements and displaying the correct readings. \\
- Establishing the instrument's reliability \\
- Maintaining adherence to industry standards, government regulations, and/ or quality assurance norms like the current good manufacturing practice. \\
- Determining the precision, deviation, and reliability of the measurements \\
Procedure to calibration instrument: \\
A calibration can take advantage of a wide range of different principles. By measuring different properties of the object under calibration it is possible to perform a calibration. This can result in different calibration methods for the same measurand, often also on the same object under calibration. It is possible to perform; direct or indirect calibrations depending on which property of the object under calibration are to be determined. \\
Direct method: Calibration of the shunt via measurement of the resistance value. \\
Indirect method: Calibration of the shunt via measurement of the currents under applied voltage the resulting different magnitude are used to calculate the resistance based on ohm's law.
\end{tabular} \& \(\mathbf{3 M}\)

$\mathbf{3 M}$

\hline
\end{tabular}

(b) \quad Using Schering bridge, describe the procedure to measure the unknown value of capacitance.
Ans:

Schering Bridge

The Schering bridge use for measuring the capacitance of the capacitor, dissipation factor, properties of an insulator, capacitor bushing, insulating oil and other insulating materials. It is one of the most commonly used AC bridge. The Schering bridge works on the principle of balancing the load on its arm.
Let, C_{1} - capacitor whose capacitance is to be determined,
r_{1} - a series resistance, representing the loss of the capacitor C_{1}.
C_{2} - a standard capacitor (The term standard capacitor means the capacitor is free from loss)
R_{3} - a non-inductive resistance
C_{4} - a variable capacitor.
R_{4} - a variable non-inductive resistance parallel with variable capacitor C_{4}.

When the bridge is in the balanced condition, zero current passes through the detector, which shows that the potential across the detector is zero. At balance condition $\mathrm{Z}_{1} / \mathrm{Z}_{2}=\quad \mathrm{Z}_{3} / \mathrm{Z}_{4}$ $\mathrm{Z}_{1} \mathrm{Z}_{4}=\mathrm{Z}_{2} \mathrm{Z}_{3}$

So,

$$
\begin{gathered}
\left(r_{1}+\frac{1}{j w C_{1}}\right)\left(\frac{R_{4}}{1+j \omega C_{4} R_{4}}\right)=\frac{1}{j \omega C_{2}} \cdot R_{3} \\
\left(r_{1}+\frac{1}{j w C_{1}}\right) R_{4}=\frac{R_{3}}{j w C_{2}}\left(1+j \omega C_{4} R_{4}\right) \\
r_{1} R_{4}-\frac{j R_{4}}{\omega C_{1}}=-j \frac{R_{3}}{\omega C_{1}}+\frac{R_{3} R_{4} C_{4}}{C_{2}}
\end{gathered}
$$

Equating the real and imaginary equations, we get

$$
\begin{gathered}
r_{1}=\frac{R_{3} C_{4}}{C_{2}} \ldots \ldots \ldots \text { equ }(1) \\
C_{1}=C_{2}\left(R_{4} / R_{3}\right) \ldots \ldots \ldots \text { equ(2) }
\end{gathered}
$$

The equation (1) and (2) are the balanced equation, and it is free from the frequency.

\begin{tabular}{|c|c|c|c|}
\hline \& (c) \& \begin{tabular}{l}
Calculate the frequency of vertical input for on oscilloscope which displays the following Lissajous figure.(Horizontal input frequency is 10 KHz) \\
(a) \\
(b) \\
Ans: \\
(a) \\
(b) \\
Soln. We know that
\[
\begin{aligned}
\& \frac{f_{y}}{f_{x}}=\frac{\text { number of horizontal tangents }}{\text { number of vertical tangents }} \\
\& f_{x}=10 \mathrm{kHz}
\end{aligned}
\] \\
In Fig.(a) No. of horizontal tangency is \(=3\) \\
No. of vertical tangency is \(=1\)
\[
\begin{aligned}
\mathbf{f}_{y} \& =(3 / 1) \times \mathrm{f}_{\mathrm{x}} \\
\& =3 \times 10 \mathrm{kHz} \\
\therefore \& \mathbf{f}_{\mathrm{y}}=30 \mathrm{kHz} \text { Ans. }
\end{aligned}
\] \\
In Fig.(b) Here, No. of horizontal tangency is \(=1\) No. of vertical tangency is \(=4\)
\[
\begin{aligned}
f_{y}= \& (1 / 4) \times f_{x} \\
\& =(1 / 4) \times 10 \mathrm{kHz} \\
\therefore \quad \& f_{y}=2.5 \mathrm{kHz} \text { Ans. }
\end{aligned}
\]
\end{tabular} \& 3M

3M

\hline 6. \& \& Attempt any TWO of the following: \& 12 M

\hline \& (a) \& | The lowest range on a 41/2 digit is 10 v full scale. What is the sensitivity of this meter? Ans: |
| :--- |
| If number of full digit then resolution R |
| Resolution $\mathrm{R}=1 / 10^{\mathrm{n}}$ |
| Resolution $R=\mathbf{1 / 1 0} \mathbf{=}=\mathbf{0 . 0 0 0 1}$ |
| Where the number of full digit is $n=4$ |
| Sensitivity $S=\left(f_{s}\right)_{\text {min }} * R$ |
| Sensitivity $S=(10 * 0.0001$ |
| Where lowest full scale deflection ($\left.\mathrm{f}_{\mathrm{s}}\right)_{\text {min }}=10$ |
| Resolution $\mathrm{R}=0.0001$ |
| Sensitivity $\mathbf{S = 0 . 0 0 1}$ | \& 3M

3M

\hline
\end{tabular}

(b)	Describe the procedure how phase is measured by Lissajous pattern on CRO. Ans: Measurement of Phase Difference A Lissajous figure is displayed on the screen when sinusoidal signals are applied to both horizontal \& vertical deflection plates of CRO. Hence, apply the sinusoidal signals, which have same amplitude and frequency to both horizontal and vertical deflection plates of CRO.For few Lissajous figures based on their shape, we can directly tell the phase difference between the two sinusoidal signals. - If the Lissajous figure is a straight line with an inclination of $45 \circ 45 \circ$ with positive x -axis, then the phase difference between the two sinusoidal signals will be $0 \circ 0 \circ$. That means, there is no phase difference between those two sinusoidal signals. - If the Lissajous figure is a straight line with an inclination of $135 \circ 135 \circ$ with positive x -axis, then the phase difference between the two sinusoidal signals will be $180 \circ 180 \circ$. That means, those two sinusoidal signals are out of phase. - If the Lissajous figure is in circular shape, then the phase difference between the two sinusoidal signals will be $90 \circ 90 \circ$ or $270 \circ 270$ 。 - We can calculate the phase difference between the two sinusoidal signals by using formulae, when the Lissajous figures are of elliptical shape. - If the major axis of an elliptical shape Lissajous figure having an inclination angle lies between $0 \circ 0 \circ$ and $90 \circ 90 \circ$ with positive x -axis, then the phase difference between the two sinusoidal signals will be. - $\phi=\sin -1(\mathrm{x} 1 \mathrm{x} 2)=\sin -1$ (y 1 y 2) - If the major axis of an elliptical shape Lissajous figure having an inclination angle lies between $90 \circ 90 \circ$ and $180 \circ 180 \circ$ with positive x -axis, then the phase difference between the two sinusoidal signals will be. - $\phi=180-\sin -1(\mathrm{x} 1 \mathrm{x} 2)=180-\sin -1(\mathrm{y} 1 \mathrm{y} 2)$ Where, x 1 is the distance from the origin to the point on x -axis, where the elliptical shape Lissajous figure intersects x 2 is the distance from the origin to the vertical tangent of elliptical shape Lissajous figure $y 1$ is the distance from the origin to the point on y-axis, where the elliptical shape Lissajous figure intersects y 2 is the distance from the origin to the horizontal tangent of elliptical shape Lissajous figure	6M
(c)	A dc voltmeter uses $50 \mu \mathrm{~A}$ and having an internal resistance of 400Ω.Calculate the value of multiplier on ranges :(i) 10 V (ii) 15 V (iii) 20 V . Ans: Given data: $\mathrm{I}_{\mathrm{m}}=50 \mu \mathrm{~A}$ and $\mathrm{R}_{\mathrm{m}}=400 \Omega$ $\begin{aligned} V & =I_{m}\left(R_{s}+R_{m}\right) \\ R_{s} & =\frac{V-I_{m} R_{m}}{I_{m}}=\frac{V}{I_{m}}-R_{m} \\ R_{s} & =\frac{V}{I_{m}}-R_{m} \end{aligned}$	

Case 1:For range 0-10v

$$
R_{s}=\frac{V}{I_{m}}-R_{m}
$$

$\mathrm{R}_{\mathrm{s}}=\left(10 / 50^{*} 10^{-6}\right)-400$
$\mathrm{R}_{\mathrm{s}}=\left(0.2 * 10^{6}\right)-400$
$R_{s}=199.6 \mathrm{~K} \Omega$
Case 2:For range 0-15v

$$
R_{s}=\frac{V}{I_{m}}-R_{m}
$$

$\mathrm{R}_{\mathrm{s}}=\left(15 / 50 * 10^{-6}\right)-400$
$\mathrm{R}_{\mathrm{s}}=\left(0.3 * 10^{6}\right)-400$
$R_{s}=\mathbf{2 9 9 . 6 K} \Omega$
Case 3:For range 0-20v

$$
R_{s}=\frac{V}{I_{m}}-R_{m}
$$

$\mathrm{R}_{\mathrm{s}}=\left(20 / 50^{*} 10^{-6}\right)-400$
$\mathrm{R}_{\mathrm{s}}=\left(0.2 * 10^{6}\right)-400$
$\mathbf{R}_{\mathrm{s}}=\mathbf{3 9 9 . 6 K} \Omega$

