(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-2019 EXAMINATION

Model Answer

Subject Name: Electronics Instruments and Measurements Important Instructions to Examiners:

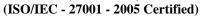
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by the candidate may vary, but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills)
- 4) While assessing figures, the examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of any questions credit may be given by judgement on the part of examiner of relevant answer based on candidate's understanding.
- 7) In programming language papers, credit may be given to any other program based on equivalent concept.

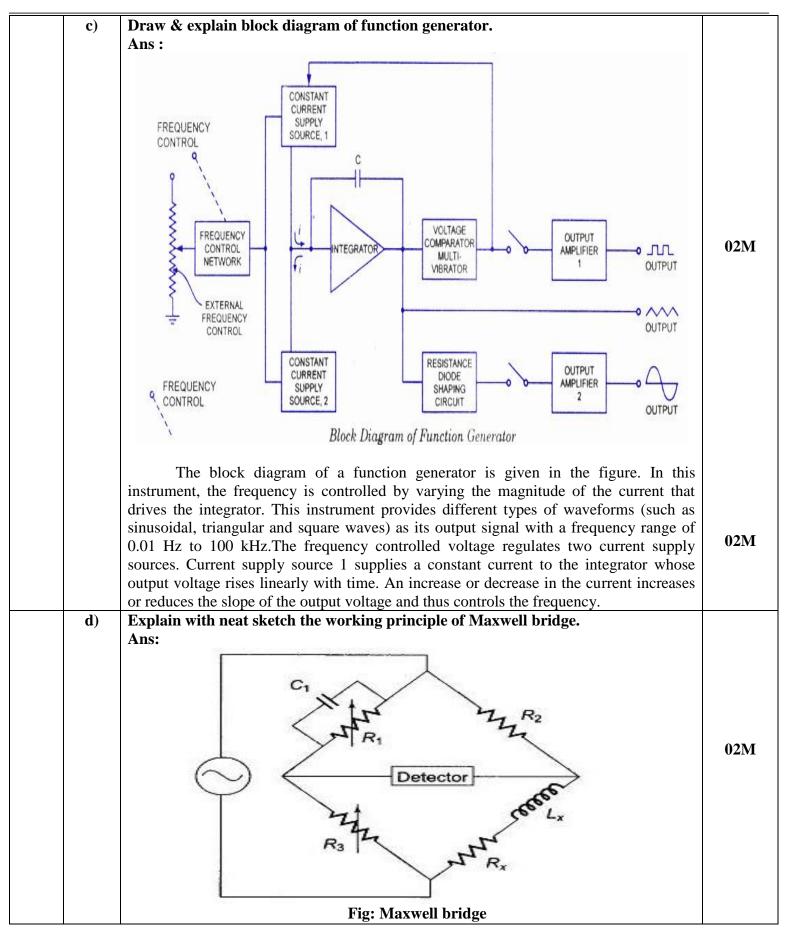
Q .	Sub	Answer	Marking
No.	Q. N.		Scheme
1.		Attempt any <u>FIVE</u> of the following:	10 M
	a)	Define "error"	
		Ans:	
		Definition of error:	
		An error may be defined as the difference between the measured value and the	02M
		actual value.	
	b)	Write the specifications of an anolog multimeter.	
		Ans:	
		Specifications of an anolog multimeter:	
		A typical meter may have the following ranges (note that the figures indicate the FSD):	02M
		• DC Voltage: 2.5V, 10V, 25V, 100V, 250V, 1000V	(any
		• AC voltage: 10V, 25V, 100V, 250V, 1000V	two)
		• DC Current: 50µA, 1mA 10mW, 100mA	
		Resistance: R, 100R, 10000R	
	c)	State significance of Lissajous figure.	
		Ans:	
		Significance of Lissajous figure:	
		Two signals are fed into separate channels. One signal is applied to the vertical system as in the usual time domain hookup. When the oscilloscope is operating in the	
		XY mode and a second, synchronous signal is fed into a different channel as specified	02M
		on the scope, both signals trace out voltages, one on the X-axis, and as if the waveform	02111
		were turned sideways, the other on the Y-axis. The resultant image is known as a	
		Lissajous pattern.	
	d)	Lissajous patient.	
		Ans:	
		Static and dynamic characteristics of an instrument:	
		Precision	
		 Accuracy 	

22331 **Subject Code:**

(Autonomous)

	 Linearity Repeatibility Sensitivity, Threshold, Resolution Drift, Range Stability Tolerance 	02M (any two)
e)	Sketch diagram of linear potentiometer. Ans: Slider arm Displacement Force summing member Linear Potentiometer www.InstrumentationToday.com	02M
f)	Fig: Linear potentiometer State two application of AC Bridges. Ans: Application of AC Bridges: • AC bridges are used to find unknown impedances along with associated parameters. • Communication system and complex electronics circuitry majorly make use of AC bridges. • AC bridge circuits are used in phase shifting and for the filtration of undesirable signals. • It is also used to measure the frequency of audio signals.	02M
g)	List the application of PMMC. Ans: Applications of PMMC: i.) In the measurement of direct currents and voltage ii.) In d.c galvanometers to defect small currents. iii.) In ballistic galvanometers used mainly for measuring changes of magnetic flux linkages.	02M



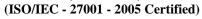

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

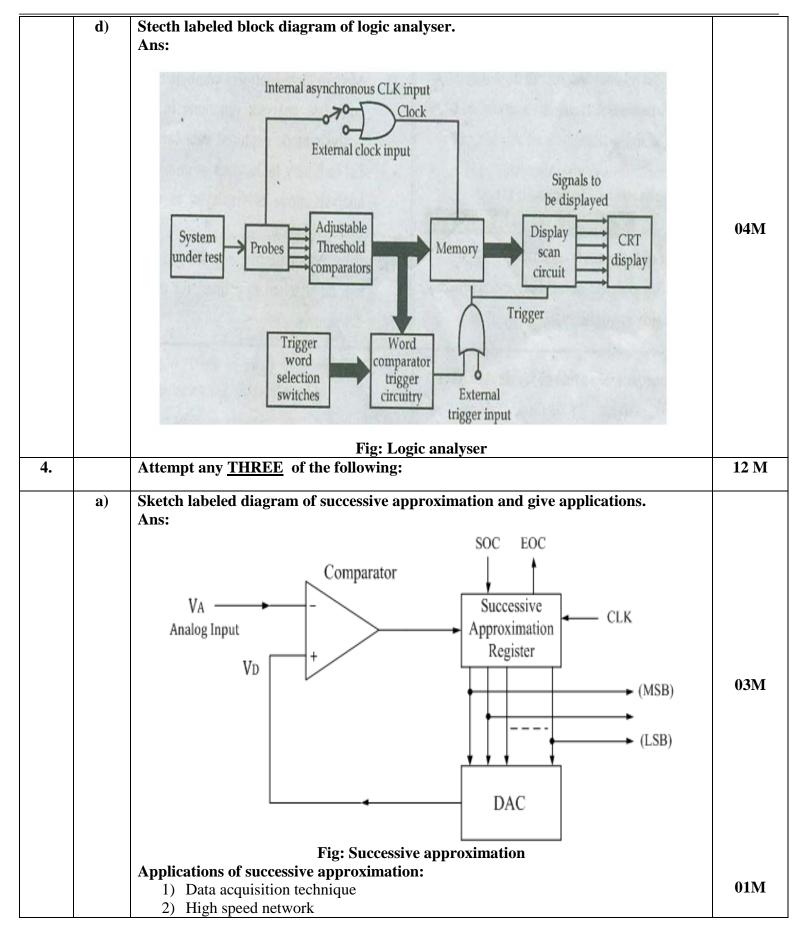
2.		Attempt any <u>THREE</u> of the following:		12 M
	a)	Compare analog instrument and digital inst	ruments.	
		Ans:		
		Analog instrument	Digital instrument	
		1. The instrument which gives output that	1. The instrument which gives output	
		varies continuously as quantity to be	that varies in discrete steps and only	
		measured is known as analoginstrument.	has finite number of values is known	
			as digital instrument.	
		2. The accuracy of analog instrument is less.	2. The accuracy of digital instrument is more.	04 M (Any 4
		3.The analog instruments required more power.	3. The digital instruments required less power.	point)
		4. Sensitivity of analog instrument is more.	4. Sensitivity of digital instrument is less.	
		5. The analog instruments are cheap.	5. The digital instruments are expensive.	
		6. The analog instruments are extremely	6. The digital instruments are not	
		portable.	easily portable.	
		7. The resolution of analog instruments is	7. The resolution of digital	
		less.	instruments is more.	
		Table: Compare analog ar	nd digital instruments	
		Freq. Amplifier Trig	ger Stop → Readout Gate 0000	02N
			uency meter	
		The basic block diagram of basic dig above figure. The signal whose frequency amplified through amplifier. The output of an The Schmitt trigger is convert input signal into fall time. The square wave is then differentiate to each cycle of unknown signal. Now the output	gital frequency meter (DFM) is shown in we have to be measured is first to be mplifier is applied to the Schmitt trigger. o a square wave which has a fast rise and ed and clipped. Each pulse is proportional uput from Schmitt trigger is applied to a	
		start and stop gate. The input pulses are allow open. The counter starts to count these pulses not allowed to pass through the gate. The cou open the number of pulse are counted by the	wed to pass through it, when the gate is . The gate is closed the output pulses are inter stops the counting. When the gate is e counter. The interval between start and	02N
		stop condition is the frequency of unknown sig $\mathbf{F} = \mathbf{N}_{t}$		
		$\mathbf{F} = \mathbf{N}$		
		$\mathbf{F} = \mathbf{N}_{t}$		

(Autonomous)

(Autonomous)

		In such type of bridges, the value of unknown resistance is determined by comparing it with the known value of the standard self-inductance. The connection diagram for the balance Maxwell bridge is shown in the figure below. Let, L ₁ – unknown inductance of resistance R ₁ . L ₂ – Variable inductance of fixed resistance r ₁ . R ₂ – variable resistance connected in series with inductor L ₂ . R ₃ , R ₄ – known non-inductance resistance $L_1 = \frac{R_3}{R_4} L_2$ At balance, $R_1 = \frac{R_3}{R_4} (R_2 + r_2)$ The value of the R ₃ and the R ₄ resistance varies from 10 to 1000 ohms with the help of the resistance box. Sometimes for balancing the bridge, the additional resistance is also inserted into the circuit.	02M
3.		Attempt any <u>THREE</u> of the following:	12 M
	a)	Explain with neat sketch the working of digital voltmeter. Ans: Input voltage Ranging and attenuator Clock oscillator Stop pulse generator Stop pulse Ground Comp. Clock Stop pulse Stop	02M
		 Fig: Digital voltmeter 1. Unknown voltage signal is fed to the pulse generator which generates a pulse 2. whose width is proportional to the input signal. 3. Output of pulse generator is fed to one leg of the AND gate. 4. The input signal to the other leg of the AND gate is a train of pulses. 5. Output of AND gate is positive triggered train of duration same as the width of the pulse generated by the pulse generator. 6. This positive triggered train is fed to the inverter which converts it into a negative triggered train. 7. Output of the inverter is fed to a counter which counts the number of triggers in the duration which is proportional to the input signal i.e. voltage under measurement. Thus, counter can be calibrated to indicate voltage in volts directly. 	02M



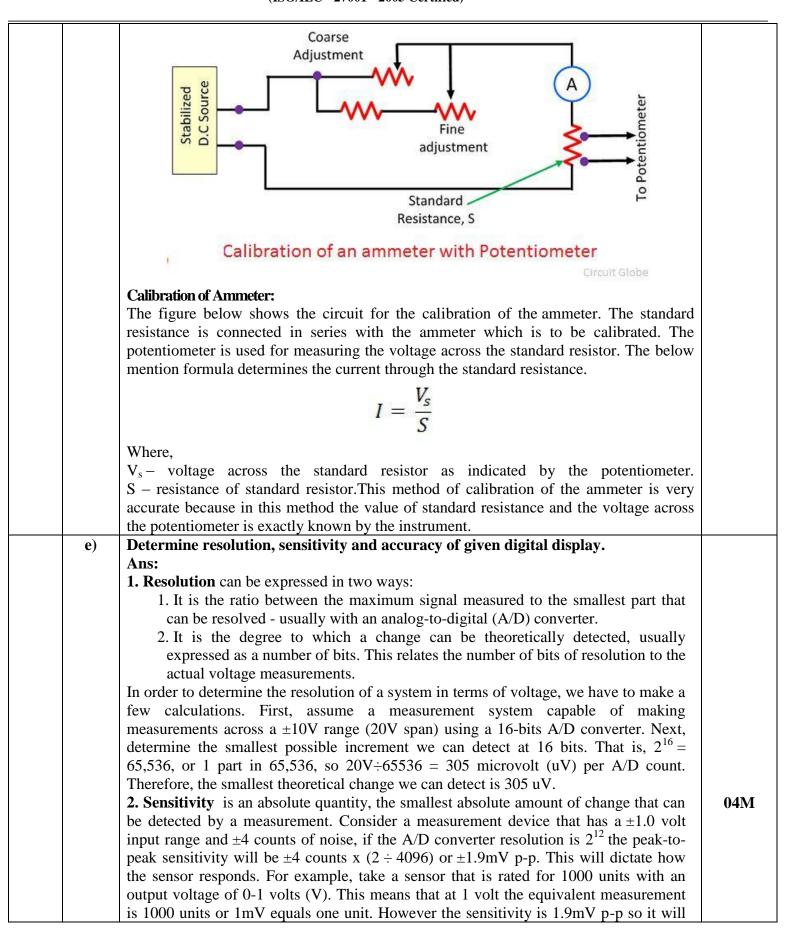

(Autonomous)

b)	List the main components of CRO.	
	Ans:	
	The main components of CRO:	
	1. Cathode ray tube	
	2. Vertical amplifier	
	3. Delay line	
	4. Time base generator	
	5. Horizontal amplifier	
	6. Trigger circuit	
	7. Power supply	
	Cathode Ray Tube: It is the heart of the oscilloscope. When the electrons emitted by	
	the electron gun strikes the phosphor screen, a visual signal is displayed on the CRT.	
	Vertical Amplifier - The input signals are amplified by the vertical amplifier. Usually,	
	the vertical amplifier is a wide band amplifier which passes the entire band of	
	frequencies.	
	Delay Line: As the name suggests, this circuit is used to delay the signal for a period of	
	time in the vertical section of CRT. The input signal is not applied directly to the	04M
	vertical plates because the part of the signal gets lost, when the delay time is not used.	(any
	Therefore, the input signal is delayed by a period of time.	(any four)
	Time Base (Sweep) Generator: Time base circuit uses a uni-junction transistor, which	iour)
	is used to produce the sweep. The saw tooth voltage produced by the time base circuit is	
	required to deflect the beam in the horizontal section. The spot is deflected by the saw	
	tooth voltage at a constant time dependent rate.	
	Horizontal Amplifier: The saw tooth voltage produced by the time base circuit is	
	amplified by the horizontal amplifier before it is applied to horizontal deflection plates.	
	Trigger Circuit: The signals which are used to activate the trigger circuit are converted	
	to trigger pulses for the precision sweep operation whose amplitude is uniform. Hence	
	input signal and the sweep frequency can be synchronized.	
	Power supply: The voltages required by CRT, horizontal amplifier, and vertical	
	amplifier are provided by the power supply block. It is classified into two types -	
	(1) Negative high voltage supply	
	(2) Positive low voltage supply	
	The voltage of negative high voltage supply is from -1000V to -1500V. The range of	
	positive voltage supply is from 300V to 400V.	
c)	Explain significance of ohm meter in instrumentation system.	
	Ans:	
	Significance of ohm meter in instrumentation system:	
	The purpose of an ohmmeter, of course, is to measure the resistance placed	
	between its leads. This resistance reading is indicated through a mechanical meter	
	movement which operates on electric current. The ohmmeter must then have an	
	internal source of voltage to create the necessary current to operate the movement,	04M
	and also have appropriate ranging resistors to allow just the right amount of current	
	through the movement at any given resistance. When there is infinite resistance (no	
	continuity between test leads), there is zero current through the meter movement, and	
	the needle points toward the far left of the scale. In this regard, the ohmmeter	
	indication is "backwards" because maximum indication (infinity) is on the left of the	
	scale, while voltage and current meters have zero at the left of their scales.	

(Autonomous)

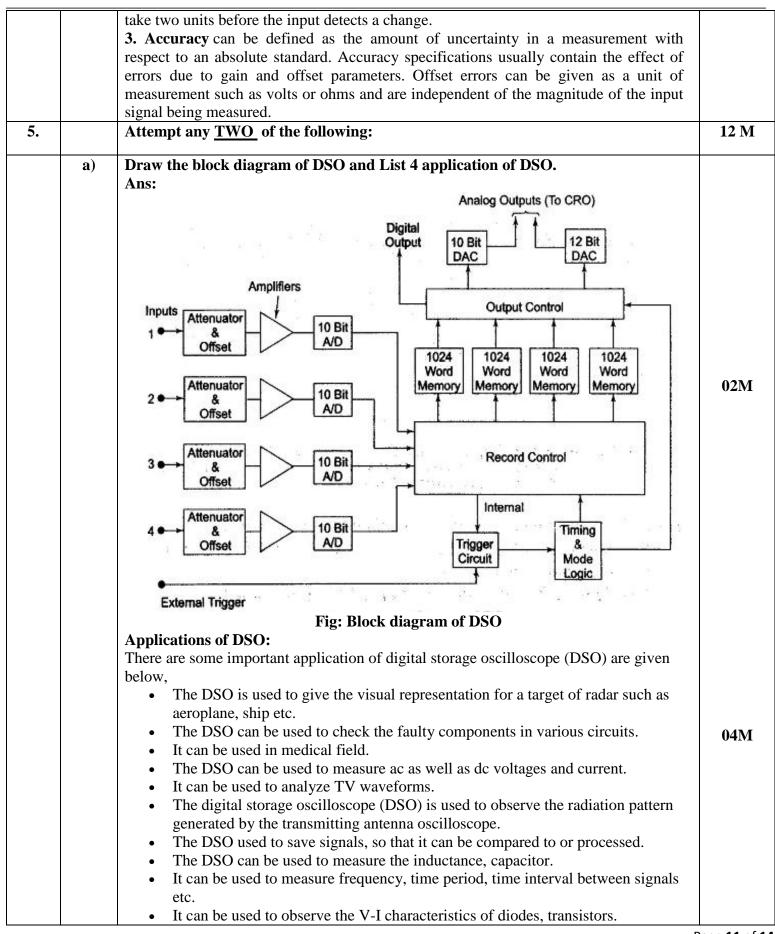
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Convert the PMMC movement into DC-voltmeter of the range 0 to 100 mW. b) Ans: Given data: @ 46 pmm c movement into DC-Voltmeter of range oto loom. solution : Given Data VM=100mV. Donsidee, deflection correspondeling of Vm=100m Ifod = Im = 10 mA **02M** $Rm = \frac{Vm}{Im} = \frac{100mV}{10mP} = 10.2$ [Rm=10-2] (i) The series resistance for full scale reading is $RS = \frac{VM}{Im} - RM =$ TRS=12 + p - sceies roistance **02M** Jefsd DRM - Shunt resistence voltans. Explain LCR-meter with sketch. c) Ans: Emitter Detector Rectifier Unknown Follower Amplifier L, C, R Front Panel Meter Setting Cs × **02M** Balance Q Setting **Block Diagram of LCR meter** Electronics Coach **Fig: LCR-meter**

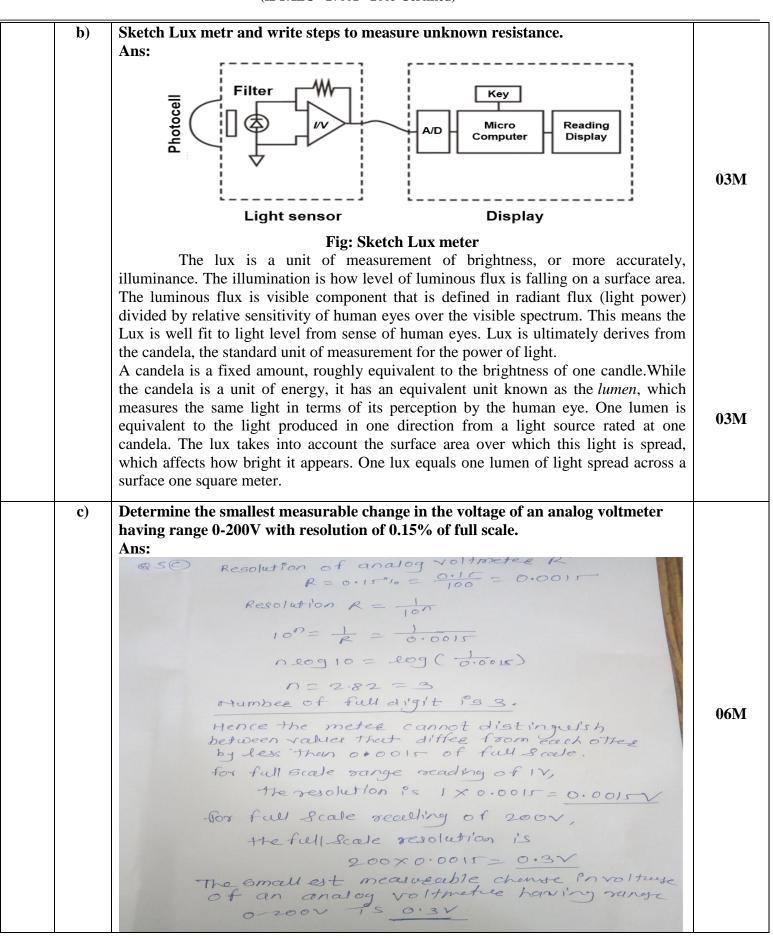


(Autonomous)

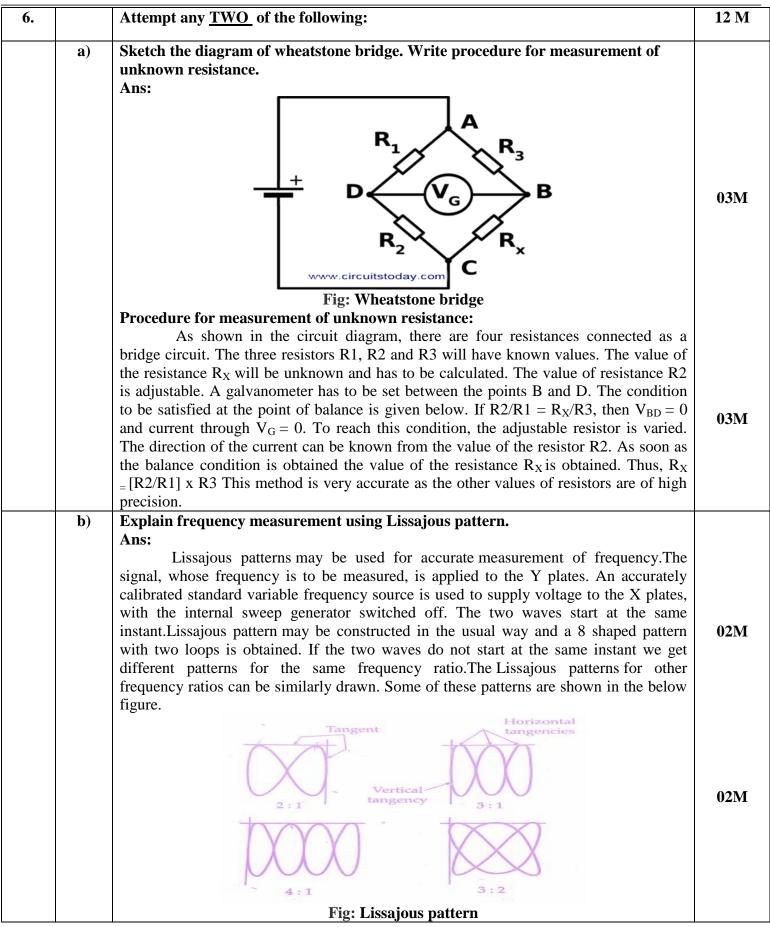
d)	meter. The measurement of DC quantities will be done by exciting the bridge with DC voltage. On the contrary, the AC measurements require excitation of the Wheatstone bridge with AC signal.For providing AC excitation, the oscillator is used in the circuit. It generates the frequency of 1 kHz. The bridge is adjusted in null position in order to balance it completely. Besides, the sensitivity of the meter should also be adjusted along with balancing of the bridge. The output from the bridge is fed to emitter follower circuit. The output from emitter follower circuit is given as an input to detector amplifier.The significance of detector amplifier can be understood by the fact that if the measuring signal is low in magnitude, it will not be able to move the indicator of PMMC meter. Thus, in order to achieve the sustainable indication we need to have a high magnitude measuring signal. But it is often observed that while dealing with the measurement process, the magnitude of the measuring signal falls down due to attenuation factor. The problem to this solution is to utilize an amplifier.The rectifier is used in the circuit to convert the AC signal into DC signal. When the bridge is provided with AC excitation then at the output end of the bridge the AC signal needs transformation into DC signal.	02M
	Voltage-ratio Box Voltage-ratio Box	02M
	Calibration of Voltmeter: The calibration is the process of checking the accuracy of the result by comparing it with the standard value. In other words, calibration checks the correctness of the instrument by comparing it with the reference standard. It helps us in determining the error occur in the reading and adjusts the voltages for getting the ideal reading. The circuit for the calibration of the voltmeter is shown in the figure below. The circuit requires two rheostats, one for controlling the voltage and another for adjustment. The voltage ratio box is used to step-down the voltage to a suitable value. The accurate value of the voltmeter is determined by measuring the value of the voltage to the maximum possible range of the potentiometer. The potentiometer measures the maximum possible value of voltages. The negative and positive error occurs in the readings of the voltmeter if the readings of the potentiometer and the voltmeter are not equal. OR	02M



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)



(Autonomous)



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous)

(Autonomous)

	It can be shown that for all the above cases, the ratio of the two frequencies is $\frac{f_y}{f_x} = \frac{\text{number of times tangent touches top or bottom}}{\text{number of times tangent touches either side}}$ $= \frac{\text{number of horizontal tangencies}}{\text{number of vertical tangencies}}$ where fy = frequency of signal applied to Y plates fx = frequency of signal applied to X plates The above rule, however, does not hold for the Lissajous pattern with free ends.	02M
c)	Describe the working of Half wave rectifier type AC voltmeter. Ans: AC Voltmeter using Half Wave Rectifier: D Rse Finusoidal Input Voltage Signal C Signa	02M
	If a Half wave rectifier is connected ahead of DC voltmeter, then that entire combination together is called AC voltmeter using Half wave rectifier. The block diagram of AC voltmeter using Half wave rectifier is shown in below figure. The above block diagram consists of two blocks: half wave rectifier and DC voltmeter. We will get the corresponding circuit diagram, just by replacing each block with the respective component(s) in above block diagram. So, the circuit diagram of AC voltmeter using Half wave rectifier will look like as shown in below figure. The rms value of sinusoidal (AC) input voltage signal is Vrms=Vm2 \rightarrow Vrms=Vm2 \Rightarrow Vm=2- \sqrt{V} rms \Rightarrow Vm=1.414Vrms \forall Wm=1.414Vrms \forall Wm=1.414Vrms \forall Where, VmVm is the maximum value of sinusoidal (AC) input voltage signal. The DC or average value of the Half wave rectifier's output signal is Vdc=Vm\piVdc=Vm\piSubstitute, the value of VmVm in above equation. Vdc=1.414Vrms π Vdc=0.45Vrms \forall dc=0.45Vrms Therefore, the AC voltmeter produces an output voltage, which is equal to 0.45 times the rms value of the sinusoidal (AC) input voltage signal	04M