21222

3 Hours / 70 Marks

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:
a) Define -
i) Apparent power
ii) Reactive power
b) Draw the phasor diagram for series RL and series RC circuit.
c) Write the formula of resonance frequency and Q factor of parallel RLC circuit.
d) Stale the formulae for star to delta conversion.
e) Define the following term.
i) Mesh
ii) Node
f) State the reciprocity theorem
g) Write the ABCD parameter of two port network.
2. Attempt any THREE of the following:
a) A series RL circuit takes a current of 2.7 A . when connected to $240 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c supply and comsumes 350 watt. Calculate resistance inductance, impedance and power factor.
b) An RLC series circuit with resistance of 20Ω, inductance 0.25 H and capacitance of $100 \mu \mathrm{~F}$ is supplied with 240 V A.C. supply Calculate
i) resonance frequency
ii) current at this condition
iii) power factor
iv) quality factor
c) Three resistance each of 12Ω are connected in star convert it into equivalent delta connection.
d) Find value of 'I' of Fig. No. 1 using superposition theorem.

Fig. No. 1
3. Attempt any THREE of the following:
a) A resistance of 10Ω, inductance of 0.1 H and capacitance of $100 \mu \mathrm{f}$ are connected in series across $100 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. supply Calculate
i) current
ii) power factor
iii) power and draw vector diagram
b) Compare series and parallel resonance circuit (any four points).
c) Give the stepwise procedure for finding current using mesh analysis.
d) Derive the condition so that power transferred from source to load is maximum.
4. Attempt any THREE of the following:
a) Two impedances $Z_{1}=6+j 8 \Omega$ and $Z_{2}=3-j 4 \Omega$ are connected in parallel across $220 \mathrm{~V}, 50 \mathrm{~Hz}, 1 \phi \mathrm{AC}$. Calculate admittance of each branch, total admittance and supply current.
b) Explain the concept of initial and final condition. State the meaning of $\mathrm{t}=\mathrm{o}-$ and $\mathrm{t}=\mathrm{o}^{+}$
c) Derive the expression for resonance frequency of series RLC circuit.
d) Determine the current through 20Ω resistance in Fig. No. 2 using node analysis.

Fig. No. 2
e) Calculate the value of current in 5Ω resistance using Norton's theorem for network shown in Fig. No. 3.

Fig. No. 3
5. Attempt any TWO of the following:
a) A parallel circuit consist of a coil of $\mathrm{R}=10 \Omega$ and $\mathrm{L}=0.2 \mathrm{H}$ is connected in parallel with capacitor of $50 \mu \mathrm{~F}$. The circuit is supplied with $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the frequency at which the circuit behaves as a pure resistance and also find Q factor.
b) Find the value of load resistance R_{L} to get maximum power transfer to it a shown in Fig. No. 4. Also find $P_{\max }$.

Fig. No. 4
c) Explain ' Z ' parameter of two port network.
6. Attempt any TWO of the following:
a) i) Explain with suitable example converting practical current source into equivalent voltage source.
ii) Practical voltage source into equivalent current source.
b) State and explain Thevenin's theorem with suitable example.
c) Find the short circuit admittance (Y) parameters for the network shown in Fig. No. 5.

Fig. No. 5

