Subject Name: Electric circuits and network Model Answer Subject C 22330

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following :	10- Total Marks
	(a)	Define impedance and reactance related to single phase AC series circuit. Give unit of both.	2M
	Ans:	Impedance of single phase AC series circuit is defined as the net opposition offered to the flow of AC current by the combination of R, L and C. Unit of Impedance is $\Omega(\text{Ohm})$. Reactance of single phase AC series circuit is defined as the opposition offered to the flow of AC current by either inductor(L) or capacitor(C). Unit of reactance is $\Omega(\text{Ohm})$.	Each correct definitio n with its unit- 1M
	(b)	Draw the impedance triangle for R-L series circuit.	2M

Subject Name: Electric circuits and network

Model Answer

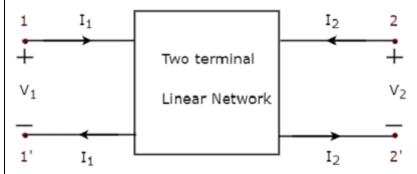
Subject C 22330

Ans:	/ ⁴↑	impedar
		ce
	z /	triangle-
	$ \mathbf{x}_{L} $	2M
	θ	
	R	
	Fig. impedance triangle for R-L series circuit.	
(c)	State Q factor for parallel R.L.C. circuit.	2M
Ans:	Q factor for parallel R.L.C. circuit is defined as the current magnification provided at	Any
	resonance. The magnitude of current flowing through inductor and capacitor is equal	correct
	to Q times the input sinusoidal current I.	definition
	As the perallel circuit magnifies the current it is also called as the current recommend circuit	n-2M
	As the parallel circuit magnifies the current it is also called as the current resonance circuit.	
	OR	
	The Quality factor of Parallel resonance RLC circuit is defined as the ratio of current	
	circulating between its two branches to the line current drawn from the supply.	
	Mathematically, Q = RX _C	
(d)	Give four steps to solve nodel analysis.	2M
Ans:	four steps to solve nodal analysis-	Each
A113.	Tour Steps to solve hour unarysis	
Alis.		step -
A113.	1.all the nodes present in the network including the reference(ground) node) are identified and marked. The number of equations to be solved is given by (n-1) where n= no of	
Allo.	1.all the nodes present in the network including the reference(ground) node) are identified	step -
All3.	1.all the nodes present in the network including the reference(ground) node) are identified and marked . The number of equations to be solved is given by (n-1) where n= no of	step -
All3.	 1.all the nodes present in the network including the reference(ground) node) are identified and marked. The number of equations to be solved is given by (n-1) where n= no of independent nodes. 2. Mark all the branch currents. 	step -
All3.	 1.all the nodes present in the network including the reference(ground) node) are identified and marked. The number of equations to be solved is given by (n-1) where n= no of independent nodes. 2. Mark all the branch currents. 3. Using KCL write current equation for each node in terms of node voltage and 	step -
Alls.	 1.all the nodes present in the network including the reference(ground) node) are identified and marked. The number of equations to be solved is given by (n-1) where n= no of independent nodes. 2. Mark all the branch currents. 	step -

Subject Name: Electric circuits and network

Model Answer

Subject C 22330


SUMMER- 19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

Any electrical network can be easily analyzed if it is represented with an equivalent model, which gives the relation between input and output variables. A two port network is a network having 2 ports. One port is used as input port and the other port is used as output port. These ports are called port1 and port2 respectively.

Once a network is represented in this equivalent form, the response of the network to signals applied to the ports can be calculated easily, without solving for all the internal voltages and currents in the network. It also allows similar circuits or devices to be compared easily.

A two port network representation is shown in the following figure.

Here, terminals 1 and 1' represent port1 and terminals 2 & 2' represent port2.

The common models that are used are referred to as z-parameters, y-parameters, h-parameters, g-parameters, and ABCD-parameters..

Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	An RC series circuit consists of R = 10Ω and C = 200 μ f.it is connected across 250 V, 50 Hz, 1 φ AC. Calculate the value of power consumed by the circuit.	4M
	Ans:		1M –Xc,
			1M-Z,

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

.

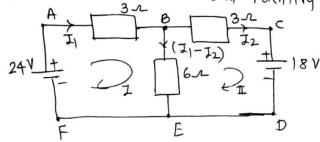
Ans:	resonance. An electrical circuit can be tuned to resonant frequency in any one of the following ways:	4M
b)	Describe the procedure to tune the given electrical circuit using the principles of	4M
	CamScanner	
	Scanned with	
	OR -: P = 1.7622 Kwatt	
	-: P = 1762. 25 watt	
	$= 250 \times 13.30 \times 0.53$	
	$P = V \cdot I(os \phi)$	
	the circuit is P=	
	And, the value of Power consumed by	
	-: P.F. = (0s 0 = 0.53 (leading)	
	Power Factor, $\cos \phi = \frac{R}{Z} = \frac{10}{18.79}$	
	$I = \frac{V}{Z} = \frac{250}{18.79} = 13.30 \text{ A}$	
	Now, the total current I:	
	$ Z = \int R^2 + xc^2 = \int 0^2 + (15.91)^2$	
	- Impedence Z: -	
	= Xc = 15.91 2	
	$=\frac{1}{2\times\pi\times50\times200\times10^{6}}$	
	$X_{c} = \frac{1}{2\pi f c}$	ed
	Copocitive Reactance, Xc:-	consu
	· ·	Powe
	Given -: R = 10 1, c = 200 UF, V = 250V, f = 50 Hz	1M-
	Solution -:	Facto
		1M- Powe

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

	 i)If the circuit parameters like resistance, inductance and capacitance are of fixed value, the resonant frequency is calculated. Then by connecting a function generator, the input frequency can be varied till the circuit is tuned to the desired resonant frequency. ii)If the circuit is to be tuned to a particular frequency, and the frequency of the supply cannot be varied, then by using either a variable capacitor or variable inductor, the variable element can be varied till the circuit is tuned to the desired resonant frequency. 	
с)	Find the current in 6Ω resistor in the circuit shown in Fig. No. 1 using mesh analysis. $24\sqrt{-1}$	4M


Subject Name: Electric circuits and network

Model Answer

Subject C 22330

step 1 -: Name the nodes and identify the loops -:

Step 2 - Equation for loop I (ABEFA) -

Apply KVL,

$$24 - 3I_1 - 6(I_1 - I_2) = 0$$

 $-3I_1 - 6I_1 + 6I_2 = -24$
 $-9I_1 + 6I_2 = -24$
 $29I_1 - 6I_2 = 24$ (1)

Step 3 -: Equation for loop II (BCDEB) -: -372-18-6(72-71)=0

$$-37_{2}-67_{2}+67_{1}=(8$$

$$67_{1}-97_{2}=18$$
 (2)

Solving equation (1) and (2) by Determinant Method

$$D = \begin{vmatrix} 9 & -6 \\ 6 & -9 \end{vmatrix} = (-9) \times 9 - [(-6) \times 6]$$

$$= -81 + 36$$

$$\Rightarrow D = -45$$

$$D_1 = \begin{bmatrix} 24 & -6 \\ 18 & -9 \end{bmatrix} = 24 \times (-9) - [(-6) \times 18]$$

$$= -216 + 108$$

$$\therefore D_1 = -108$$

$$\mathfrak{D}_2 = \begin{bmatrix} 9 & 24 \\ 6 & 18 \end{bmatrix} = 9 \times 18 - (24 \times 6)$$
$$= 162 - 144$$
$$\therefore \mathfrak{D}_2 = 18$$

$$I_1 = \frac{P_1}{D} = \frac{-108}{-45} = 2.4 \text{ A}$$

$$I_2 = \frac{D_2}{D} = \frac{18}{-45} = -0.4 \text{ A}$$

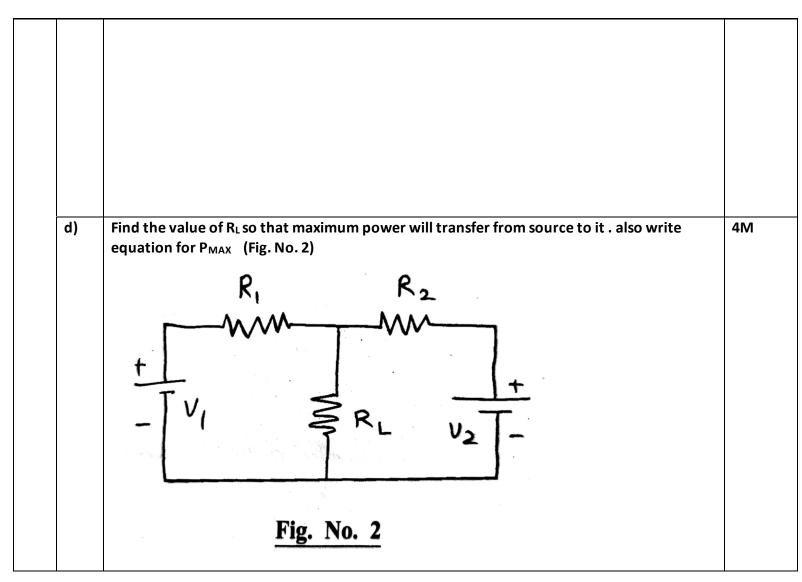
The current in 6-1 resistor is
$$(71-72)$$

= 2.4-(-0.4)
= 2.8 A

½ Meach equation

7

1M for I_1 ,


1M for I_2 ,

1M for current through 6 ohm resistor

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

ç

Ans:	V and Verlag	3M-for
	Replace the voltage sources V, and Vz by	R _L
	short circuit to obtain the circuit shown	
	below: R2 MMM R2	1M for
		power
	$\Rightarrow RTH \Longrightarrow RT_1 \Longrightarrow R_2$	formula
	: RTH = R1 11d R2	
	$R_{TH} = \frac{R_1 \times R_2}{R_1 + R_2}$	
	But the condition for maximum power transfer	
	to the load is -	
	$R_{L} = R_{TH}$	
	The value of RL = RTH so that moximum	
	power will transfer from source to it.	
	The equation for Pmax -:	
	$P_{L (max)} = \left(\frac{V_{TH}}{R_{TH} + R_{TH}}\right)^2 \cdot R_{TH}$	
	Substitute RL=RTH	
	. Therefore the power trunsfer to	
	the load 1s given by the equation	
	$P_{L} = \frac{\sqrt{2}}{4R_{TH}}$	
	-T-VIH	

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	List the power factor improves technique and explain any one with advantage and disadvantage	4M
	Ans:	Power factor improvement techniques are i) Synchronous Motors (or capacitors) ii) Static Capacitors	2Marks for Listing Techniq ues

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

	iii)	Phase Advancers			
	ove cor cor ii) Sta mo Sin unl iii) Pha	er-excited and, especial recting the power factor rection can be varied by tic Capacitors: They are tors and are practically ce their capacitance is reass arrangements for automated as a company of the economical degrees the capacital degrees the economical degrees.	ly, when they are running r in bulk and have the specially changing their excitation. It is installed to improve the policies of the call to a switching of the call fitted with individual maching.	nes. However, it may be noted in each case, depends upon the	2Marks for any one techniq e
b)	-	•	rallel resonance on the basis	of:	4M
	(i) (ii) (iii) (iv)	Resonant frequency Impedance Current and Magnification.			
Ans:					1 mark
	S.No.	Parameter	Series Circuit	Parallel Circuit	for each
	1	Resonant frequency	$f_r = \frac{1}{2\pi\sqrt{LC}}$	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	
		Impedance	Minimum, Z = R	Maximum, Z = L/CR	
	2	Impedance			

Subject Name: Electric circuits and network

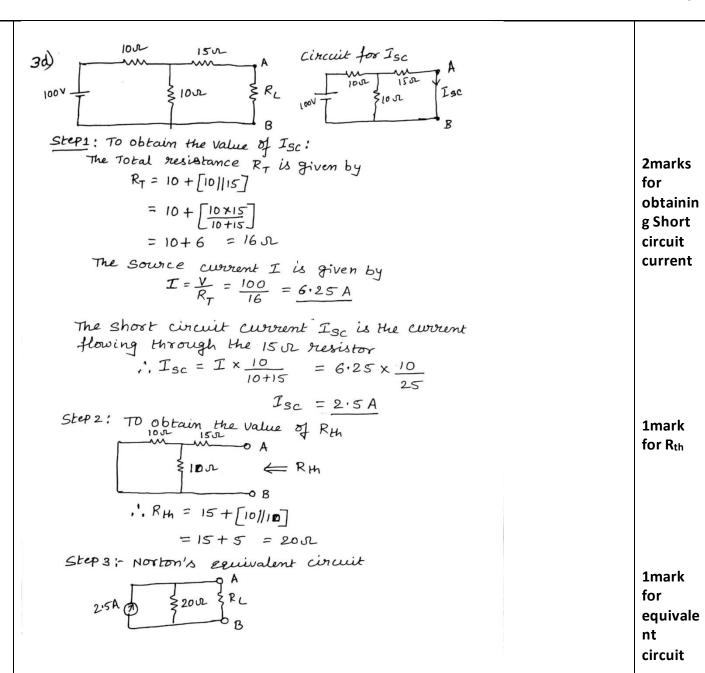
Model Answer

Subject C 22330

	4	Magnification	Voltage magnification takes	Current magnification	
			place	takes place	
c)		-	ert voltage source into equivalent ams of both the sources.	current source. Give its	4M
Ans:			ies resistance can be converted	l into (or replaced by) and	2 marks for Procedu re
			ctical voltage source into practic	al current source.	
	i)Find t	he value of current su	pplied by the source when a 'sho	ort' is put across terminals A	
	Therefo	ore,			
		Curre	ent I=V/R		
	-	ralue of resistance whi ne same value of serie	ch is connected in parallel with the resistance ($R_s=R_{sh}$).	ne equivalent current source	
	ii)This (-	ource is then connected in para	llel with the shunt(parallel)	
		()((a = 2:202	$R \longrightarrow A$		

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

		T
	Application: For the simplification and analysis of complex networks the transformation of voltage source to an equivalent current source or vice versa is often necessary.	1 ma for Appl on
d)	Find Norton's equivalent circuit of the Fig. shown (Fig. No. 3)	4M
	15.2 10.2	
	NOON T PL	
	Fig. No. 3	
Ans:		

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject Name: Electric circuits and network

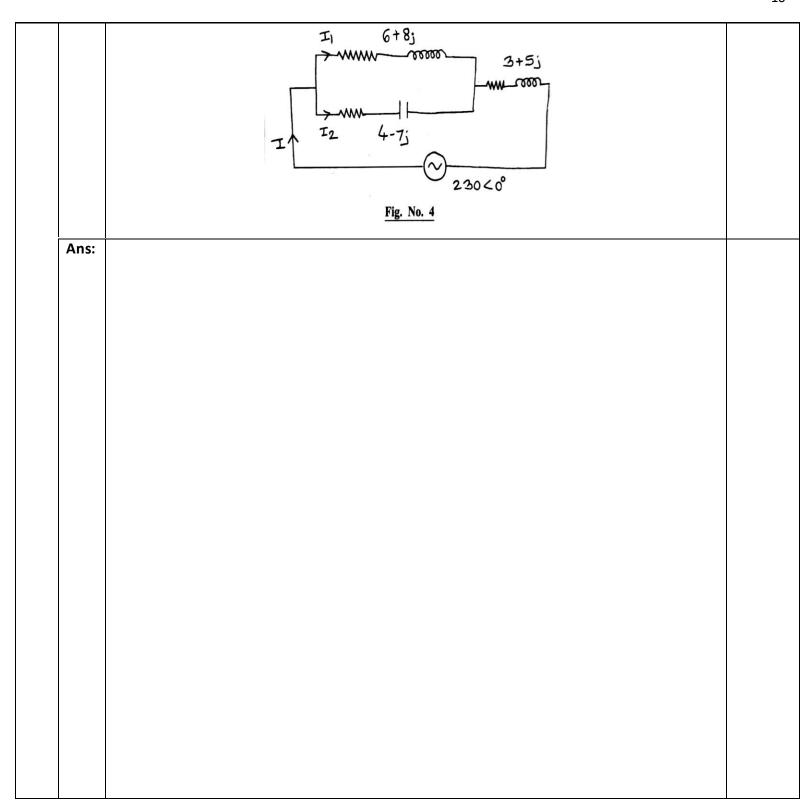
Model Answer

Subject C 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
4	ζ	Attempt any THREE of the following :	12- Total Marks
	(a)	In a series circuit containing pure resistance pure inductance, the current and voltage are expressed as:	4M
		I(t) = 5 sin (314t + 2 Π/3) and v(t) = 20 sin (314t + 5 Π/6)	
		Find:	
		(i) Impedance of circuit (ii) Resistance of circuit (iii) Inductance in circuit	
		(iv) Average power drawn by circuit.	
	Ans:	I(t) = 5 sin (314t + 2 $\Pi/3$) and v(t) = 20 sin (314t + 5 $\Pi/6$) Converting the above standard sinusoidal forms into polar forms	
		Rms values of current and voltage are	
		$I = 5/\sqrt{2} = 3.54 \text{ A}$; $V = 20/\sqrt{2} = 14.14 \text{ V}$	
		Converting the above standard sinusoidal forms into polar forms	
		<i>I</i> = (3.54 ∟120°) A	
		\vec{V} = (14.14 \lfloor 150°) V	1 mark
		By Ohm's law,	Impeda nce
		Circuit Impedance, $\vec{Z} = \vec{V} / \vec{I} = (14.14 \lfloor 150^{\circ})/(3.54 \lfloor 120^{\circ})$	
		= (4 L30°) Ω	

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

	$=(3.46+j2) \Omega$	
	From polar form of Impedance	
	i) Impedance of circuit = Z = 4 Ω	1 mark for Resistan
	From Rectangular form of impedance	ce
	ii) Resistance of circuit R = Z Cos ϕ = 4 Cos(30) = 3.46 Ω	
	iii) Inductance of circuit L	
		1 mark
	$X_L = 2\pi fL$	for Inductan
	$L = X_L/2\pi f = 2/(2\pi \times 50) = 6.37 \times 10^{-3} H$	ce
	From polar form of Impedance , φ =30°	
	So, pf=cosφ	
	=cos30°	
	=0.866 lagging	1 mark
	IV) Average power, P=VI Cos	for Average
	= 14.14 x 3.54 x cos30°	power
	=43.35 W	
(Find I, I ₁ ,I ₂ power factor of the circuit in Fig. No. 4	4M

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

U

17

46) 1mark for I 501 Given: Z1 = 6+8j, Z2 = 4-7j, Z3 = 3+5j, V=2306° Total Impedance $Z = (z_1 || z_2) + z_3 = \frac{z_1 z_2}{z_1 + z_2} + z_3$ But $Z_1 + Z_2 = 6 + 8i + 4 - 7i$ = 10 + i= $10[5.71^\circ]$ 1mark for I₁ Polar form of Z, = (10153-13) " Z2 = (8.06 [-60.25) $\frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{(10(53.13) \times (8.06(-60.25))}{10(5.71)}$ $= \frac{80.6 \left[-7.12\right]}{10 \left[5.71\right]} = 8.06 \left[-12.83^{\circ}\right]$ = 7.85 - 1.78j.. Z = 7.85-1.78j + 3+5j 1mark = 10.85 + 3.225 for la = 11.31/16.52° • Total current $I = \frac{V}{2} = \frac{2300}{11.31/16.52}$.. I = 20.33 [-16.52° A • $I_1 = I \times \frac{Z_2}{Z_1 + Z_2} = (20.33 (-16.52) \frac{8.06 (-60.25)}{10 (5.71)}$ 1mark for **Power** =(20.33 [-16.52) (0.806 [-65.96) factor I, = 16.38 (-82.48° A

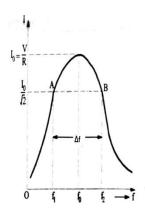
Subject Name: Electric circuits and network

Model Answer

Subject C 22330

18

• $I_2 = I \times \frac{Z_1}{Z_1 + Z_2} = (20.33[-16.52) \frac{(10[53.13)}{(10[5.71)}]$
$= (20.33 - 16.52) (147.42)$ $I_2 = 20.33 (30.9°) A$
• power factor = cos φ = cos (-16.52) = 0.958 (agging
-


(c) Explain the term bandwidth of a series resonant circuit. Derive its equation.

4M

Ans: Band width (BW) of a series resonance circuit is defined as the range of frequency over which circuit current is equal to or greater than $\frac{Ir}{\sqrt{2}}$ or 70.7 % of maximum current where I_0 or I_r = current at resonance.

Explanat ion 2 Marks

The resonance curve for a series RLC circuit is shown below:

From the graph it is clear that for all frequencies lying between f_1 and f_2 the circuit current is equal to or greater than 70.7 % of maximum current i.e.

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

19

2marks

for Derivati

on

$$I_r = V/R$$

Thus Band width of the circuit, BW = $\Delta f = (f_2 - f_1) Hz$

Or BW = $\Delta \omega = (\omega_2 - \omega_1)$ rad/sec

Derivation of equation for bandwidth -

The relationship between bandwidth , Q factor and resonant frequency is given by

$$(f_2 - f_1) = f_r/Q_r$$

Where f_2 - f_1 = bandwidth, f_r =resonant frequency and Q_r = Q factor at resonance

But
$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

And
$$Q_r = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Substituting these values in the equation for bandwidth,

$$\Delta f = f_r / Q_r = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1}{R}\sqrt{\frac{L}{C}}} = \frac{R\sqrt{C}}{2\pi\sqrt{CL^2}} = \frac{R}{2\pi L} Hz$$

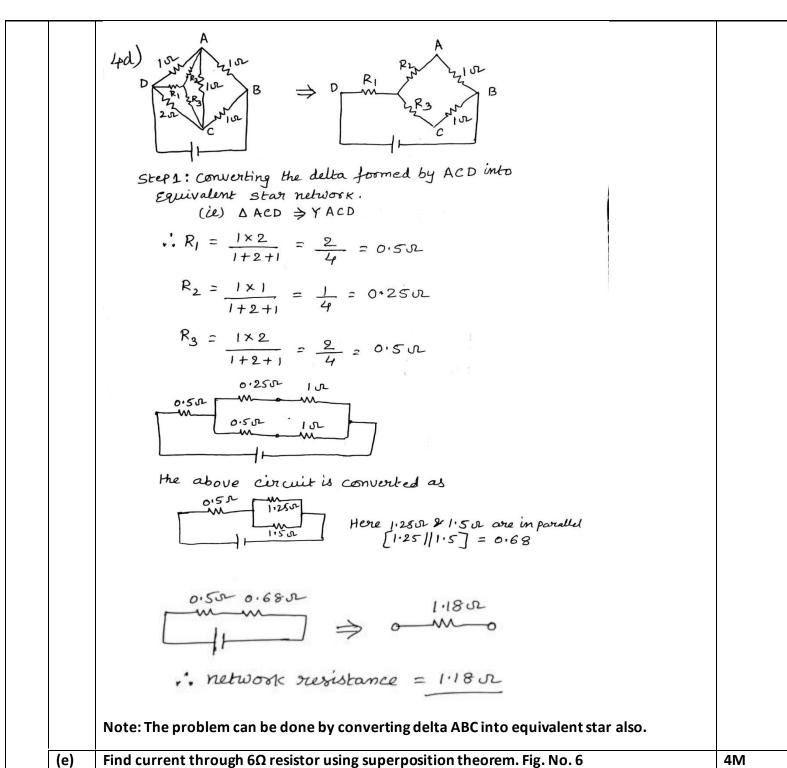
Therefore bandwidth $\Delta f = f_2 - f_1 = \frac{R}{2\pi L}$ Hz

OR

$$\Delta \omega = 2\pi \Delta f = \frac{R}{L} \text{ rad/sec}$$

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

(d)	A bridge network ABCD has arms AB, BC, CD and DA of resistances 1, 1,2 and 1 ohm	4M
(u)	respectively. If the detector AC has a resistance of 1 ohm, determine by star/delta	4171
	transformation, the network resistance as viewed from the battery terminals.	
	12 my mis	
	D SIR B	
	Zz Z MM	
	2.52	
	Vc	
	The second second	
	Fig. No. 5	
Ans		
		2 marks
		for
		Converti
		ng delta
		to star
		2 marks
		for
		Network
		resistan
		ce

Subject Name: Electric circuits and network

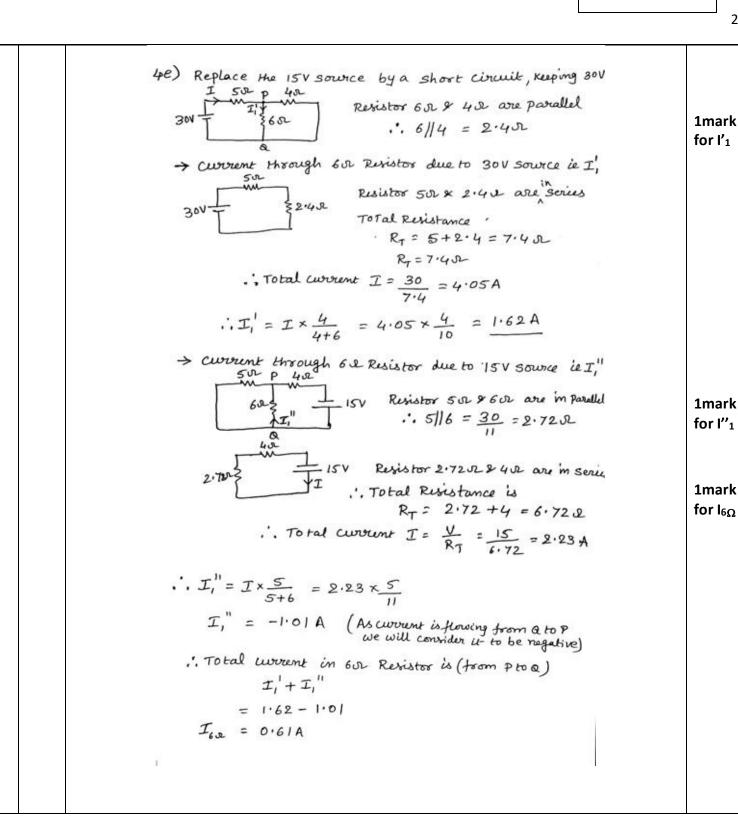
Mode<u>l Answer</u>

Subject C 22330

Subject Name: Electric circuits and network

Model Answer

Subject C 22330


22 45 Fig. No. 6 Ans: 1mark for R_T

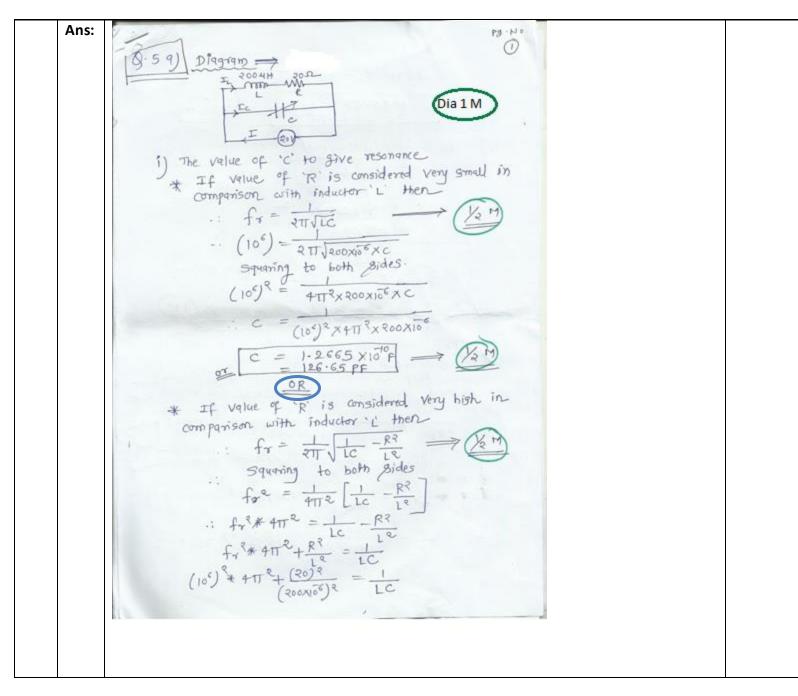
Subject Name: Electric circuits and network

Model Answer

Subject Co

22330

Subject Name: Electric circuits and network


Model Answer

Subject C 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	 A coil of resistance 20 Ω and 200 μH is in parallel with a variable capacitor. The voltage of the supply is 20 V at a frequency of 10⁶ Hz. Calculate: (i) The value of C to give resonance. (ii) The Q of the coil. (iii) The current in each branch of the circuit at resonance. 	6M

Subject Name: Electric circuits and network Model Answer

Subject C 22330

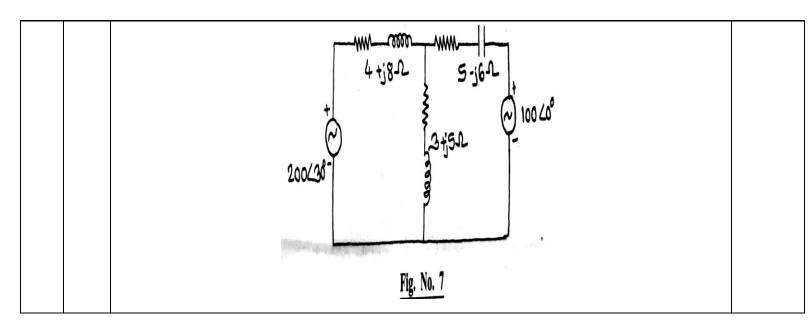
Subject Name: Electric circuits and network

Model Answer

Subject C 22330

3.9+8
$$\times 10^{15} = \frac{1}{1.00}$$

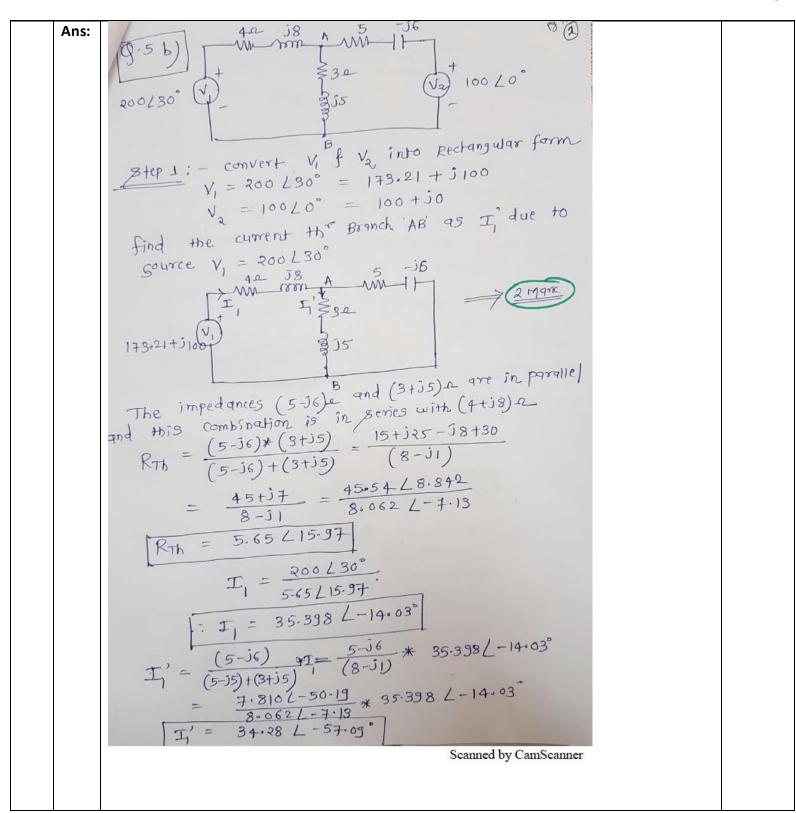
3.9+8 $\times 10^{15} \times 200 \times 10^{16} = \frac{1}{1.00}$


The 9-of the coft

 $0 = \frac{1}{10} \times \frac{1}{10}$
 $0 = \frac{1}{10} \times \frac{1}{10}$
 $0 = \frac{1}{10} \times \frac{1}{10}$
 $0 = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}$
 $0 = \frac{1}{10} \times \frac{1$

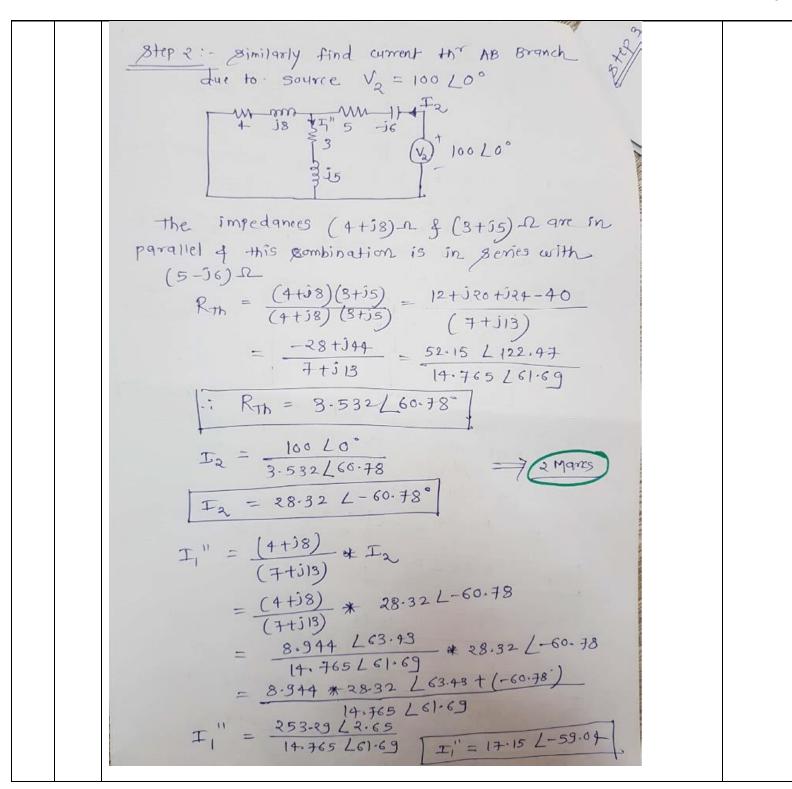
Subject Name: Electric circuits and network

Model Answer


Subject C 22330

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

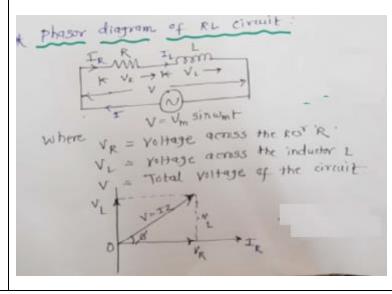
Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

30

c) Sketch the phasor diagram for the nominal drawn circuit with justification of each phasor drawn.

Ans:

Consider series R-L circuit

:1 Mark

Circuit diagram

: 3 Marks

Phasor

diagram

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

31

Explanat

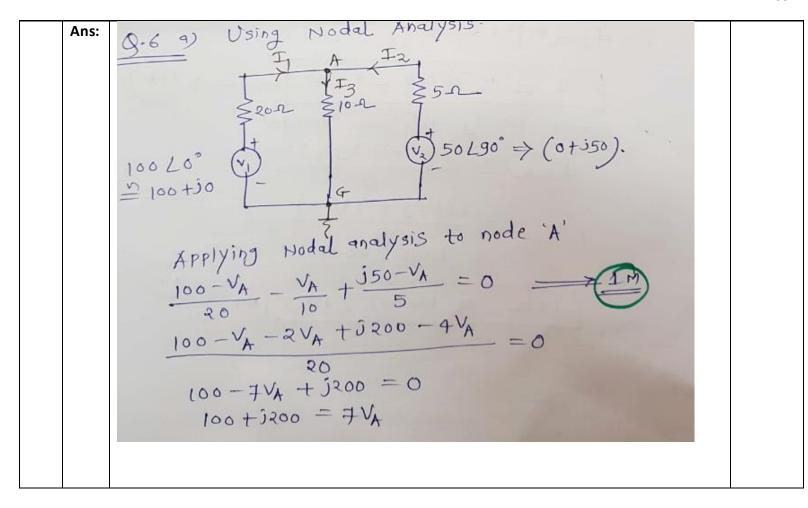
ion :2Marks

Explanation: In RL circuit Resistor R of Inductor L' and connected in genies with a voltage gupply of Vivo since both R of L are connected in genies, so the current in both the elements of the ext
remains game. Te $I_R = I_L = I$
let VR & VL be Voltage drop across . resistor & inductor.
phase. Where as m inductor, the voltage VL f current are not in phase. The Voltage leads the current by go:

Note: If the student has attempted to solve the question considering any one of the following circuits: Series R-C or R-L-C circuit or Parallel R-L or R-C or R-L-C circuit, give appropriate marks.

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following:	12- Total Marks
	a)	Use nodal analysis to calculate the current flowing in each branch of the network shown in Fig. No. 8 The state of the network shown in Fig. No. 8 Fig. No. 8	6M

Subject Name: Electric circuits and network

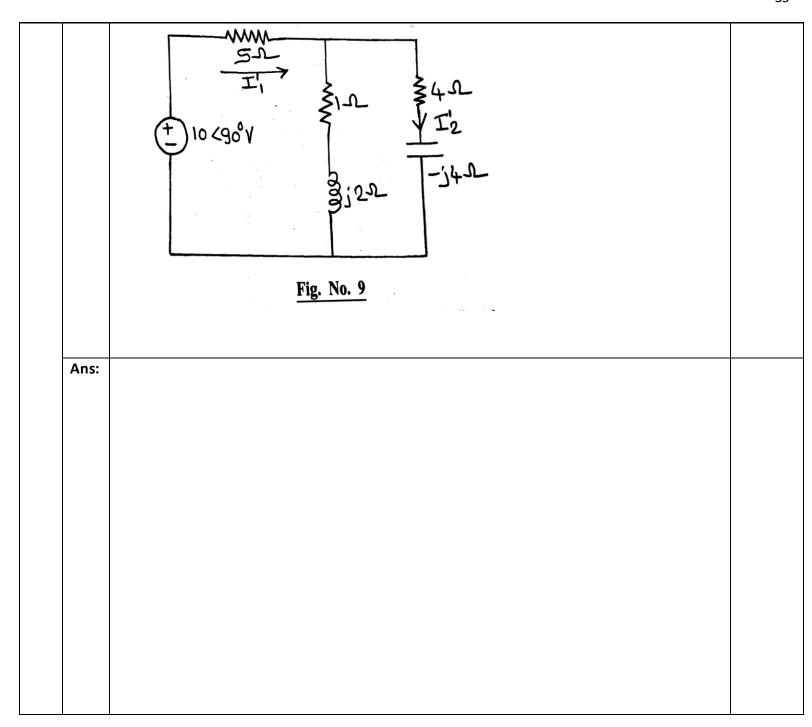
Model Answer

Subject C 22330

Subject Name: Electric circuits and network

Model Answer

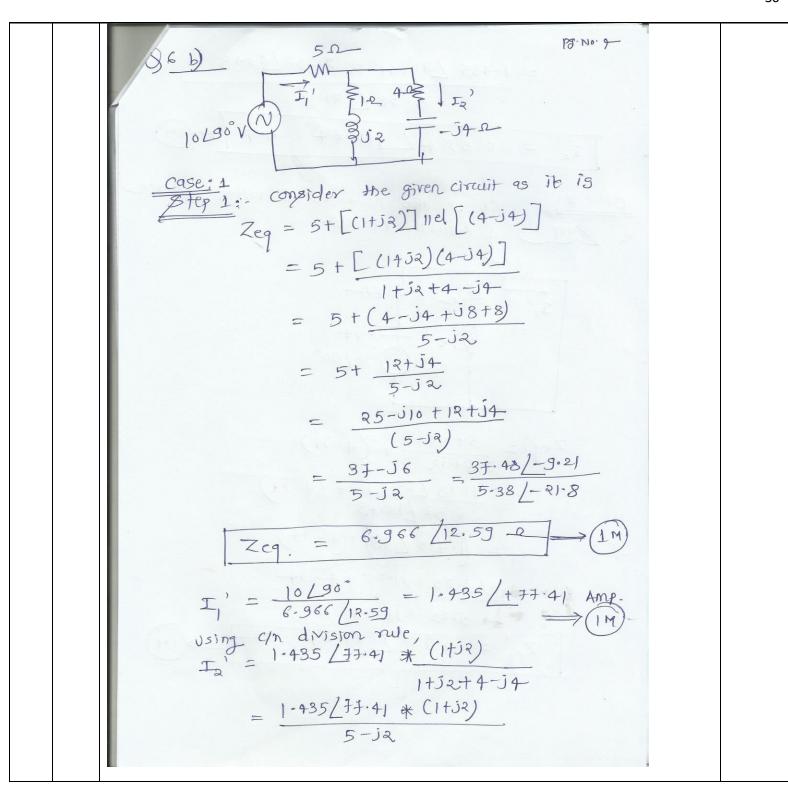
Subject C 22330


34

100+j200 = VA 6 current flowing the 102 resistor I 10 2 = VA = 31.94 L63.43 1: IIO2 = 3-194 L 63-43 Amp. => (IM) (c) current flowing the 500 resistor. I5a = j50 -14-29 = j28-57 Verify the reciprocity theorem in the circuit given in Fig. No. 9 b) 6M

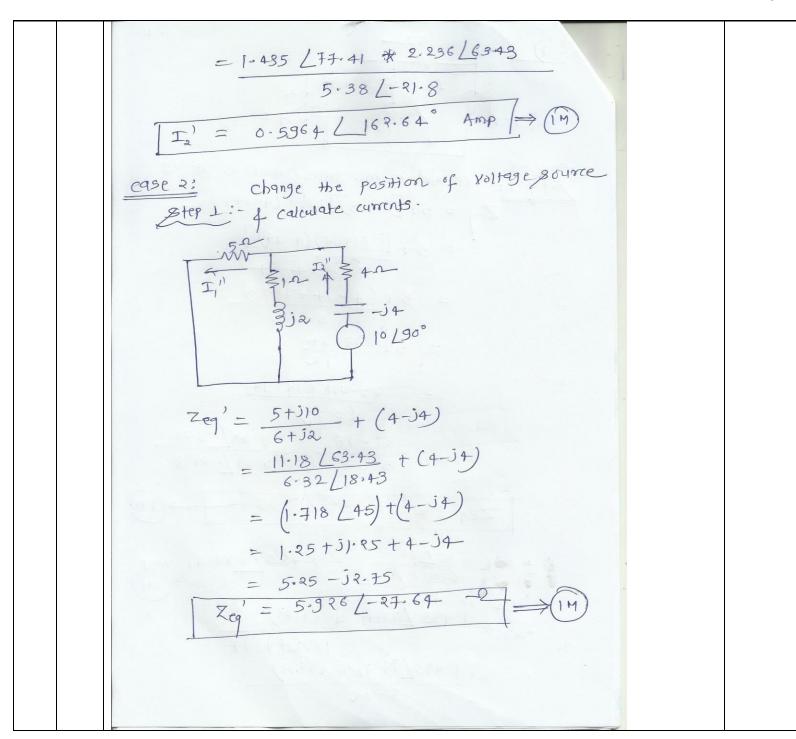
Subject Name: Electric circuits and network

Model Answer


Subject C 22330

Subject Name: Electric circuits and network Mode

Model Answer


Subject C 22330

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

$$T_{0}^{"} = \frac{10696}{5.98662461}$$

$$T_{1}^{"} = 1.687 \frac{117.64}{117.64} \text{ mp}$$

$$05103 \text{ current division rule},$$

$$T_{1}^{"} = 1.687 \frac{117.64}{117.64} * \frac{(17.2)}{67.2}$$

$$= 1.687 \frac{117.64}{117.64} * \frac{(2.23663.43)}{6.32618.43}$$

$$T_{1}^{"} = 0.596 \frac{162.64}{162.64} \text{ mp}$$

$$T_{1}^{"} = 0.596 \frac{162.64}{162.64} \text{ mp}$$

$$T_{2}^{"} = \frac{10696}{0.596664} \text{ mp}$$

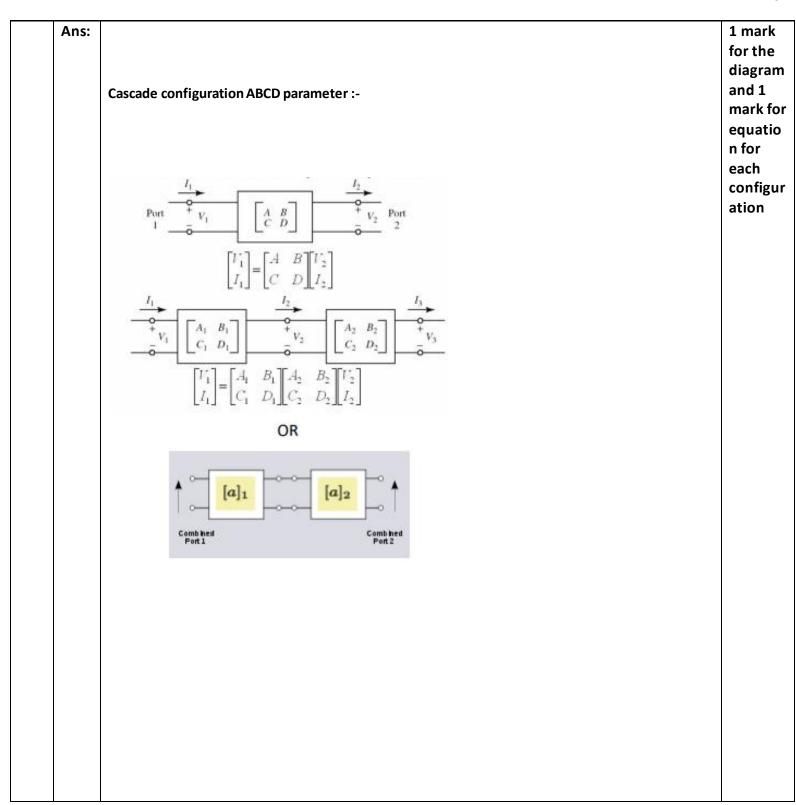
$$T_{2}^{"} = \frac{10696}{0.596664}$$

$$= \frac{16.77664}{16.7664}$$

$$= \frac{16.77664}{16.7664}$$
A= the transfer ratio is some in both cases.
Thus the Reciprocity this is Verified.

Subject Name: Electric circuits and network

Model Answer

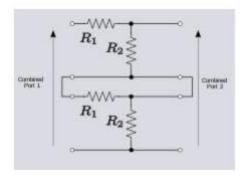

Subject C 22330

[c)	Draw the two port network and determine the indicated parameters for the following	6M
	-	configurations:	
		(i) Cascade configurations (ABCD parameter) (ii) Series configurations	
		(iii) Parallel configurations.	

Subject Name: Electric circuits and network

Model Answer

Subject C 22330


Subject Name: Electric circuits and network

Model Answer

Subject C 22330

41

Series configurations:-

OR

V₁

V₁

V₂

V₂

V₂

V₂

V₂

V₃

V₄

V₇

V₈

V

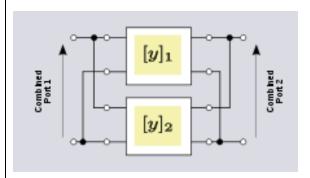
Where N1 and N2 are two port Network

$$[Z] = [Z_1] + [Z_2]$$

The Z parameter equation can be written as below

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

where Z_{11} , Z_{12} , Z_{21} and Z_{22} are sum of corresponding values of individual networks.


Subject Name: Electric circuits and network

Model Answer

Subject C 22330

42

Parallel configurations:-

When two-ports are connected in a parallel configuration as shown in figure, The choice of two-port parameter is the *y*-parameters. The *y*-parameters of the combined network are found by matrix addition of the two individual *y*-parameter matrices.

$$[\mathbf{y}] = [\mathbf{y}]_1 + [\mathbf{y}]_2$$

Where Y parameter equation can be written as below

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

where Y_{11} , Y_{12} , Y_{21} and Y_{22} are sum of corresponding values of individual networks.