

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code: | 22323

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
1.	a) Ans.	Attempt any <u>FIVE</u> of the following: Draw symbol and write truth table of EX-OR gate. Symbol	10 2M
		Truth Table Truth Table for two input EX-OR gate. A logical gate whose output is one when odd number of inputs are one, for any other condition output is low.	Symbol 1M Truth Table 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

b)	Define terms "Minterm" and "Maxterm" with proper example of each.	2M
Ans.	Minterm: Each individual term in the canonical SOP form is called as Minterm. Example: Canonical SOP $Y = \overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC}$ Each individual term is called minterm	Each Definitio n with example 1M
	Maxterm: Each individual term in the canonical POS form is called as Maxterm. Example: Canonical POS $Y = (A + B) \cdot (A + \overline{B})$ Each individual term is called maxterm	Each Definitio n with example 1M
c) Ans.	Draw symbol of JK flip-flop and write its truth table. Symbol	2M
	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	Symbol 1M
		Truth Table 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

d)	State importance of pipelining in 8086 microprocessor	2M
Ans	• In pipelining, while the current instruction is executing, next	
	instruction is fetched using a queue.	Any two
	• Pipelining enables many instructions to be executed at the same time.	points 2M
		2111
	• It allows execution to be done in fewer cycles.	
	• Speed up the execution speed of the processor.	
	More efficient use of processor.	
e)	Give any four applications of digital circuits.	2M
Ans		
	i) Object Counter	Any
	ii) Dancing Lights	relevant
	iii) Scrolling Notice board	four
	iv) Multiplexer	applicati
	v) Digital Computers	ons
	vi) Washing machines, Television	2M
	vii) Digital Calculators	
	viii) Military Systems	
	ix) Medical Equipments	
	x) Mobile Phones	
	xi) Radar navigation and guiding systems	
	xii) Microprocessors	
f)	Define the following terms –	2M
	(i) Physical Address	
	(ii) Effective Address	
Ans	. (i) Physical Address	
	(Note: Diagram is Optional)	Each
	Physical: The address given by BIU is 20 bit called as physical	definitio
	address. It is the actual address of the memory location accessed by	n
	the microprocessor. It is calculated as	1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

	(ii) Effective Address Cii) Effective Address Effective Address: Effective address or the offset address is the offset for a memory operand. It is an unassigned 16 bit number that gives the operand's distance in bytes from the beginning of the segment.	
g)	Choose instruction for following situations: (i) Addition of 16 bit Hex. No with carry (ii) Division of 8 bit No. (iii) Rotate content of BL by 4 bit. (iv) Perform logical AND operation of AX and BX	2M
Ans	(i) Addition of 16 bit Hex. No with carry (Note any other relevant registers shall also be considered) ADC Destination 16, Source 16 OR ADC AX, BX OR ADC AX, 4500H (ii) Division of 8 bit No. (Note any other relevant registers shall also be considered) DIV SOURCE OR DIV BL	Each instructi on ½ M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

		(:::)D-4-44-4- ef DI b4 bi4	
		(iii)Rotate content of BL by 4 bit. MOV CL,04H	
		ROR BL, CL	
		OR	
		MOV CL, 04H	
		ROL BL, CL	
		ROL BL, CL	
		(iv) Perform logical AND operation of AX and BX AND AX,BX	
		AND AX,BX	
2.		Attempt any THREE of the following:	12
	a)	Convert following decimal to octal and Hexadecimal	4M
	u)	i) $(297)_{10} = ()_8$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		, () , () , ()	Each
	Ans.	$(i) (297)_{10} = ()_8$	conversi
			on
		8 297	2M
		$\begin{array}{c c} 8 & 37 & 1 & \rightarrow & \text{CLSD} \\ \hline 8 & 4 & 5 & \uparrow \\ \hline & 4 & \rightarrow & \text{CMSD} \end{array}$	
		8 4 5	
		$\longrightarrow Cmso)$	
		,	
		.'. (297) ₁₀ = (451) ₈	
		$(ii) (453)_{10} = ()_{16}$	
		$(453)_{10} = (9)_{16}$ 16 453 (Decimal) (Hex) 16 28 5	
		16/453 (Decimal) (Hex)	
		16 28 5 -> 5 (160)	
		$16 \boxed{1}$ $12 \rightarrow 0 \uparrow$	
		1 cmsp)	
		·· C453)10 = (1C5)16	
		,	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

b)	Convert the given minterm into standard POS form. $Y(A, B, CD) = (\overline{A}.BC) + (B.\overline{C}\overline{D}) + (\overline{A}\overline{B})$	<i>4M</i>
Ans.	Note: Solution is given by considering $Y(A, B, CD)$ as $Y(A, B, C, D)$	
	Y(A,B,C,D)= $\overline{A}BC + B\overline{C}\overline{O} + \overline{A}\overline{B}$ Converting into standard sof form, Y(A,B,C,D)= $\overline{A}BC (D+\overline{D}) + (A+\overline{A}) B\overline{C}\overline{O} + \overline{A}\overline{B} CC+\overline{C})(D+\overline{D})$ Y(A,B,C,D)= $\overline{A}BC (D+\overline{D}) + (A+\overline{A}) B\overline{C}\overline{O} + \overline{A}\overline{B} CC+\overline{A}\overline{B} C\overline{O}$ $= \overline{A}BCO + \overline{A}B\overline{C}\overline{O}$ $= \overline{A}$	Standar d SOP form 2M Conversi on to Standar d POS 2M
c) Ans.	Draw symbol and write truth table for the following flip flop and give one application of each. i) Clocked R-S flip flop ii) T- flip flop (i) Clocked R-S flip flop	<i>4M</i>
	Symbol S RS Clock Hip Hop R	Symbol ½ M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: Digital Techniques & Microprocessor

Subject Code: 22323

$\begin{pmatrix} Q_{n+1} \\ X \end{pmatrix}$	Qn+1 Rer Qn No c	mark	Truth
	7		
Qn	140 6	han	table
		Thonge	<i>1M</i>
0			
1	2		
^	Set		
in digital circu	nts.		¹/2 M
T Q			Symbo ¹ / ₂ M
			Truth table
Un	+1		1M
a	in		
Q	2		
	be used in sequenters. in digital circums of the sequenters of the	be used in sequential circuit counters. in digital circuits.	be used in sequential circuits. counters. in digital circuits.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

		Application: i) Used to design counters in digital circuits. ii) Can be used in frequency divider circuits.	Any one Applicat ion ½ M
	d) Ans.	Prove $A(\overline{A} + C)(\overline{A}B + C)(\overline{A}BC + \overline{C}) = 0$ Note: Any other relevant laws applied shall be considered while obtaining the correct answer.	4M
		L.H.S. $=A(\overline{A}+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)$ $=(A\overline{A}+AC)(\overline{A}B+C)(\overline{A}BC+\overline{C})$ $=(O+AC)(\overline{A}B+C)(\overline{A}BC+\overline{C})$ $=(A\overline{A}BC+AC)(\overline{A}BC+\overline{C})$ $=(O+AC)(\overline{A}BC+\overline{C})$ $=(O+AC)(\overline{A}BC$	Correct solution 4M
3	a) Ans.	Attempt any <u>THREE</u> of the following: Implement OR gate and NOT gate using "Universal NAND gate". Write expressions for both. 1. "OR" gate using "Universal NAND" gate:	12 4M
		$A \longrightarrow \overline{A}$ $Y = \overline{A} \cdot \overline{B} = A + B$	Output Expressi on 1M
		$B \longrightarrow \overline{B}$	Circuit Diagram 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

	2. "NOT" gate using "Universal NAND" gate: $Y = \overline{A \cdot B} = \overline{A \cdot A} \qquad \text{since } A = B = A$ $But \ A \cdot A = A \qquad \ Y = \overline{A}$ $Input \longrightarrow Y \text{ (Output)}$ $A = B = A$	Output Expressi on 1M Circuit Diagram 1M
b)	Explain following instructions for 8 bit and 16 bit data. (i) PUSH (ii) DAA (iii) IDJV (iv) XOR	4M
Ans	Note: Any other relevant registers shall also be considered in the example/explanation. (i) PUSH Format: PUSH source This instruction decrements the SP (Stack Pointer) register (by 2) and	Explain ation of each ½ M
	copies the word specified by source to the location at the top of the stack. Here, Source can be a 16-bit general purpose register, segment register or memory location. Example- PUSH AX	Example for each case ½ M
	OR PUSH AX	
	This instruction decrements the stack pointer by 2 and copies the 16 bit data from AX register to the stack segment where the stack pointer then points.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject Code: Subject: Digital Techniques & Microprocessor

22323

(ii) DAA

DAA stands for Decimal Adjust Accumulator AL after BCD Addition

Explanation:

This instruction is used to make sure the result of adding two packed BCD numbers is adjusted to be a correct BCD number. The result of the addition must be in AL for DAA instruction to work correctly. If the lower nibble in AL after addition is > 9 or Auxiliary Carry Flag is set, then add 6 to lower nibble of AL. If the upper nibble in AL is > 9H or Carry Flag is set, and then add 6 to upper nibble of AL.

Example: - (Any Same Type of Example)

if AL=99 BCD and BL=99 BCD Then ADD AL, BL

 $1001\ 1001 = AL = 99\ BCD$ + 1001 1001 = BL = 99 BCD

 $0011\ 0010 = AL = 32\ H$ and CF=1, AF=1

After the execution of DAA instruction, the result is CF = 1

0011 0010 =AL =32 H AH =1

+ 01100110

1001 1000 = AL = 98 in BCD

same type example for 16 bit can be considered.

OR

DAA instruction is used to convert the sum of two packed BCD numbers in the register AL into a correct BCD number.

Example:

MOV AL, 23H

MOV BL, 47H

ADD AL, BL

DAA

After the execution of the above instructions, the result in AL = 70H.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

22323

Subject Code:

(iii) IDJV

(NOTE: CONSIDER THE GIVEN INSTRUCTION AS IDIV):

Syntax: IDIV source

It divides a signed word in AX by an signed byte in source during 16/8 division. Also it is used to divide a signed double word in DX,AX by an signed word in source during 16/8 division.

operation:

a. if the source is byte then

AL ← AL/signed 8 bit source

AH ← AL MOD signed 8 bit source

b. if the source is word then

AX ← DX,AX/signed 16 bit source

DX,AX MOD signed 16 bit source

OR

IDIV BL

This instruction is used to divide signed word in AX register by signed byte in BL register. The quotient after division will be stored in AL register, whereas the remainder is stored in AH register.

IDIV BX

This instruction is used to divide signed double word in DX,AX register by signed word in BX register. The signed 16 bit quotient will be stored in AX register, whereas the signed 16 bit remainder is stored in AH register.

(iv) **XOR** – Used to perform Exclusive-OR operation over each bit in a byte/word with the corresponding bit in another byte/word.

Syntax: XOR Destination, Source

Example:

For 8bit data:

XOR AL, BL

This instruction performs Exclusive-OR bit by bit at AL with BL and the result is stored in AL..

For 16bit data:

XOR AX, BX

This instruction performs Exclusive-OR bit by bit word at AX with word in BX and the result is stored in AX.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

c) Ans.	Draw waves for positive and negative triggering with proper labeling. Identify two situations where these triggering can be used? Note: Any additional relevant point related to triggering situation shall be considered	4M
	Positive-edge trigger.	Diagram 2M
	Negative-edge trigger.	Any relevant
	 Edge triggering can be used in flipflops as clock input. It is used in counters circuits. They can be used in shift registers They can be used to synchronous data. 	situation where triggerin g is used 2M
d) Ans	Simplify Y=F(A, B,CD) = Σ m (1, 2, 8, 9, 10, 12, 13) + d(4,5) Using K-map and write expression Note: Solution is given considering Y=F(A, B,CD) as Y= F(A, B,C,D)	4M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

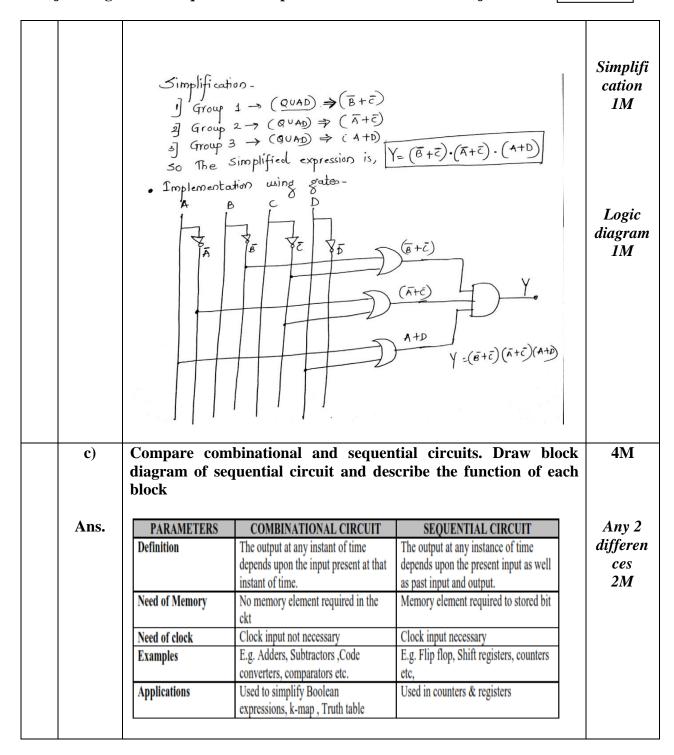
		R-map representation for the given expression will be - AB OF CD CD CD AB OF CD CD AB OF CD CD AB OF CD A	Correct K-map 2M Correct equation 2M
4	a)	Attempt any <u>THREE</u> of the following Suggest "Two instruction" for each of the following addressing modes. (i) Register Addressing Mode. (ii) Direct Addressing Mode (iii) Based Indexed Addressing Mode (iv) Immediate Addressing Mode.	12 4M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Ans	i) Register Addressing Mode: a. MOV AX, CX b. AND AL, BL c. ROR AL, CL ii) Direct addressing mode: a.MOV AL, [3000H] b. AND AX,[8000H] c.INC [4712H] iii) Based indexed Addressing mode: 1.MOV AX, [BX][SI] 2.ADD AL, [BX][DI] 3.MOV AX, [BX+SI]	Conside r any two instructi on, each instructi on ½ M
b) Ans.	 iv) Immediate addressing mode: 1.MOV AL, 46H 2. MOV BX, 1234H 3. MOV DX, 0040H Minimize the expression and draw logic circuit using basic gates. F (A,B,CD) = πm {0, 2, 4, 6, 7, 10, 11, 14, 15} Note: Solution is given considering Y=F(A, B,CD) as Y= F(A, B,C,D) 	4M
	K: Map representation for the given expression will be AB CD C+D C+D C+D C+D C+D OO OI II IO A+B OI 1 4 5 1 7 6 Group 3 A+B II I2 I3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Correct K-Map 2M


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

		Inputs	Combinational logic circuit Memory element	- Output	Block diagram 1M
	on the input 2. Sec feedba 3. Sec	e present value o signal. quential circuit ca ack circuit. quential circuit	f the input but also on an be considered as cor	putput depends not only previous values of the mbinational circuit with nt like flip – flops as	Explana tion 1M
d) Ans	i) Difi ii) Co	ferentiate between mpare 8086 and	en RISC and CISC pro 80586 (Pentium)(3 po en RISC and CISC pro	ints)	4M
	Sr. No	PARAMETER	RISC PROCESSOPR	CISC PROCESSOR	Any
	1.	Instruction set	Few instructions	More instructions	three
	2.	Data types	Few data types	More data types	points 2M
	3.	Addressing mode	Few Addressing modes	More Addressing modes	
	4.	Registers	Large number of general purpose registers	Small number of general purpose registers & special purpose registers.	
			Load/store architecture	No load/store	
	5.	Architecture type	Load/store arcintecture		
	5. 6.	Architecture type Operation	Single- cycle	architecture Multi-cycle	
		type		architecture	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

SR. NO	PARAMETER	8086	80586 (Pentium)	Any three points
1.	Data Bus	16 bit	64 bit	2M
2	Address Bus	20 bit	32 bit	
3	Physical memory	1 MB	4 GB	
4	Register size	16 bit	32 bit	
5	Voltage required	5 V	3.3 V	
6	Clock type	1x	3x	
7	Pipelining	Yes	Yes	
	$\begin{array}{c} D_0 - D_0 \\ D_1 - D_1 & 4:1 \\ \end{array}$			Diagrai 3M
S ₁ & S ₀	$\begin{array}{c} D_{0} - D_{0} & 4:1 \\ D_{1} - D_{1} & MUX \\ D_{2} - D_{2} & (1) \\ D_{3} - D_{3} & S_{1} & S_{0} \\ \end{array}$ $\begin{array}{c} D_{4} - D_{0} & S_{1} & S_{0} \\ D_{5} - D_{1} & 4:1 \\ D_{6} - D_{2} & MUX \\ D_{7} - D_{3} & (2) \\ \end{array}$ $\begin{array}{c} D_{8} - D_{0} & A:1 \\ D_{9} - D_{1} & MUX \\ \end{array}$	D ₀ 4:1 D ₁ MUX Y D ₂ (5)	Output	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

5		Attempt any TWO of the following:	12
	a)	Write algorithm and 8086 assembly language program to find	
		average salary of five employees of "SILICON Systems". Assume	6M
		4 digit salary of each employee. Also write output.	
	Ans.	Note: Any other correct logic shall be considered.	
		ALGORITHM	Algorith
		1. START	m
		2. DEFINE ARRAY SALARY OF 5 NUMBERS EACH 4 DIGIT IN	2M
		DATA SEGMENT	
		3. DEFINE VARIABLE AVG TO STORE RESULT IN DATA	
		SEGMENT	
		4. MOVE DATA IN AX	
		5. MOVE DATA FROM AX TO DS	
		6. MOVE NUM1 TO CX TO SET COUNTER	
		7. LOAD ADDRESS OF ARRAY SALARY TO BX	
		8. MOVE 0000H TO AX	
		9. ADD CONTENTS OF MEMORY POINTED BY BX TO AX	
		10. IF NO CARRY, GOTO STEP 12	
		11. INCREMENT DX REGISTER	
		12. INCREMENT BX TWICE TO POINT TO NEXT NUMBER	
		13. DECREMENT COUNTER CX; IF NOT ZERO GOTO STEP 9	
		14. DIVIDE THE SUM BY NUM1	
		15. STORE THE RESULT AX INTO AVG	
		16. END	
		To. END	
		PROGRAM	
		DATA SEGMENT	
		SALARY DW 4000H,5000H,6000H,7000H,8000H	
		NUM1 DW 05H	
		AVG DW?	Program
		DATA ENDS	3M
		CODE SEGMENT	J171
		ASSUME DS:DATA, CS:CODE	
		START:	
		MOV AX,DATA	
		MOV DS,AX	
		MOV CX,NUM1	
		MOV BX, OFFSET SALARY	
		MOV BX, OFFSET SALART MOV AX,0000H	
		1110 + 1111,000011	l .

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	L1: ADD AX, [BX]	
	JNC NEXT	
	INC DX	
	NEXT: INC BX	
	INC BX	
	LOOP L1	
	DIV NUM1	
	MOV AVG,AX	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	
		Outpu
	Output	$1\dot{M}$
	AVG=6000H	
b)	Refer Fig No. 1 and write truth table and output "Y", write	6M
	expression at output of gates. Redraw the Fig. No. 1."	
	Truth Table Output	
	A B C D Y	
	(i) Based Indexed Add Salag Node	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	parties the property of the property of the parties	
	A B C D	
	parties the property of the property of the parties	
	parties the property of the property of the parties	
	parties the property of the property of the parties	
	parties the property of the property of the parties	
	parties the property of the property of the parties	
	parties the property of the property of the parties	
	parties the property of the property of the parties	
	A B C D Y	
	parties the property of the property of the parties	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

	Truth Tab	le						
			Т	ruth Tab	le			
			Inj	out		Output		
		A	В	C	D	Y		
		0	0	0	0	0		
		0	0	0	1	0		
Ans		0	0	1	0	0		
		0	0	1	1	1		
		0	1	0	0	0		Truth
		0	1	0	1	0		Table
		0	1	1	0	0		3M
		0	1	1	1	0		JIVI
		1	0	0	0	0		
		1	0	0	1	0		
		1	0	1	0	0		
		1	0	1	1	0		
		1	1	0	0	0		
		1	1	0	1	0		
		1	1	1	0	0		
		1	1	1	1	1		
		A B C			B+AB C.B A+B+C	> Y) 18 18 18 18 18 18	Expressi on at output of gates 3M
	$Y = \overline{(AB+}$	+ĀB) +	(<u>c b</u>) -	+(A+B+	C+1)			

(Autonomous)

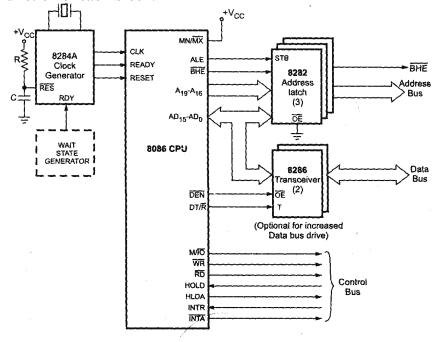
(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323


Ans.

c)

Draw minimum mode configuration of 8086 and explain the function of each block.

Diagram 3M

6M

When $MN/\overline{MX} = 1$ or connected to $+V_{CC}$ as shown in the figure, the 8086 microprocessor operates in minimum mode system.

Explana tion 3M

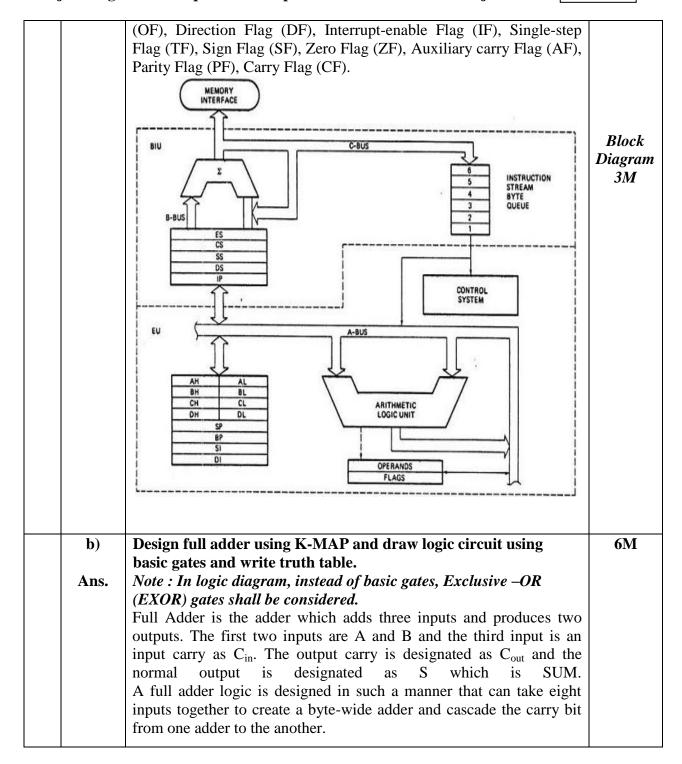
- In this mode, the microprocessor chip itself gives out all the control signals. This is a single processor mode.
- The 8284 clock generator in the system is used to generate the CLK and to synchronize some external signals with the system clock. It is also used to generate RESET and READY signal through wait state generator.
- Three 8282 address latches are used for separating the valid address from the multiplexed address/data signals and the controlled by the ALE signal generated by 8086.
- Two 8286 Transceivers are the bi-directional buffers. They are required to separate the valid data from the time multiplexed address/data signal. This is controlled by two signals, DEN & DT/\bar{R} .

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

6		Attempt any <u>TWO</u> of the following:	12
	a)	Draw architectural block diagram of 8086 microprocessor and	6M
		describe the function of each block.	
	Ans	Note: Any other relevant diagram shall be considered.	
		Internal architecture of Intel 8086:	Explana
		Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-	tion of
		bit address bus. The internal architecture of Intel 8086 is divided into	blocks
		two units,	<i>3M</i>
		1. Bus Interface Unit (BIU)	
		2. Execution Unit (EU).	
		Bus Interface Unit (BIU)	
		Memory Interface:	
		The Bus Interface Unit (BIU) generates the 20-bit physical memory	
		address and provides the interface with external memory	
		(ROM/RAM). 8086 has a single memory interface.	
		Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in	
		advance and kept in a 6- byte Instruction Queue while other	
		instructions are being executed in the Execution Unit (EU).	
		Segment registers:	
		There are four 16-bit segment registers, viz., the code segment (CS),	
		the stack segment (SS), the extra segment (ES), and the data segment	
		(DS). The processor uses CS segment for all accesses to instructions	
		referenced by instruction pointer (IP) register.	
		Adder:	
		8086's BIU produces the 20-bit physical memory address by	
		combining a 16-bit segment address with a 16-bit offset address using	
		the adder circuit.	
		2. Execution Unit:	
		Control unit: The instructions fetched by BIU in the instruction byte	
		queue are decoded under the control of timing and control signals.	
		Arithmetic and Logic Unit (ALU): Execution unit has a 16 bit	
		ALU, which performs arithmetic & logic operations.	
		General purpose register unit: All general registers of the 8086	
		microprocessor can be used for arithmetic and logic operations. The	
		general registers are: Accumulator register AL (8 bit), AX (AL & AH	
		for 16 bit), Base register, Count register, Data register, Stack Pointer	
		(SP), Base Pointer (BP), Source Index (SI), Destination Index (DI).	
		Flags: is a 16-bit register containing 9 1-bit flags: Overflow Flag	


(Autonomous)

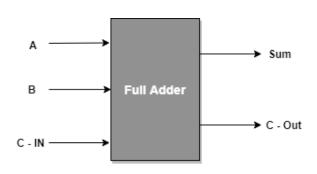
(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

(Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

Truth Table

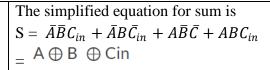
	Input		Out	put
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth Table 2M

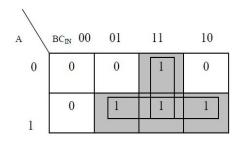
Based on the truth table, the Boolean functions for Sum (S) and Carry – out (C_{out}) can be derived using K – Map.

For Sum S:

A	BC _{IN} 00	01	11	10
0	0	1	0	1
1	1	0	1	0
		6		


(Autonomous)

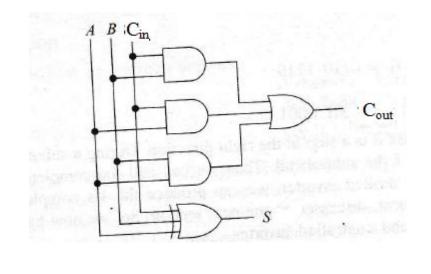
(ISO/IEC - 27001 - 2005 Certified)


WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor Subject Code:

22323

For Carry – out (C_{out}):



K map design 2M

The simplified equation for C_{out} is

$$C_{out} = AB + AC_{in} + BC_{in} \label{eq:cout}$$

Logic Circuit Diagram

Logic diagram 2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

c)	Write an assembly language program to find the largest number	6M
	from an array of a 10 numbers. Assume suitable data.	
Ans	Note: Either 8bit or 16bit data shall be considered.	
	DATA SEGMENT	
	ARR DB 1,4,2,3,9,8,6,7,5,10	
	LN DW 10	
	LDB?	Correct
	DATA ENDS	logic
	CODE SEGMENT	<i>3M</i>
	ASSUME DS:DATA, CS:CODE	
	START:	
	MOV AX,DATA	
	MOV DS,AX	Correct
	LEA SI,ARR	Instructi
	MOV AL,ARR[SI]	ons
	MOV L,AL	<i>3M</i>
	MOV CX,LN	
	REPEAT: MOV AL,ARR[SI]	
	CMP L,AL	
	JG NOCHANGE (or JNC NOCHANGE)	
	MOV L,AL	
	NOCHANGE: INC SI	
	LOOP REPEAT	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	