SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code: 22323
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
1.	a)	Attempt any FIVE of the following: Ans. State the function of linker and debugger. Function of linker and debugger: Linker: There are certain programs which are large in size and cannot be executed at one go simultaneously. Such programs are divided into sub programs also known as modules. The linker is used to link such small programs to form one large program. It also generates an executable file.	Each function $\mathbf{1 M}$
Debugger: Debugger is used to test and debug programs. The debugger allows a user to test a program step by step, so that the problem points or steps can be identified and rectified. It allows the user to inspect the registers and memory locations after a program has been executed.			
b) Ans.	List any four addressing modes and give one example of each. Addressing Modes: 1. Immediate Addressing Mode: Example: MOV CL, 03H ADD AX, 1234H	$\mathbf{2 M}$	

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor \quad Subject Code: 22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor \quad Subject Code: 22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor \quad Subject Code: 22323

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor
 Subject Code:
 22323

(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
 Subject Code:
 22323

	ii) $(\mathbf{3 4})_{10}-(48)_{10}=$? $(34)_{10}=(9)_{2}$ $(48)_{10}=(9)_{2}$ $\begin{array}{c\|ccc} 2 & 34 \\ \hline 2 & 17 & 0 & (2 S B) \\ \hline 2 & 8 & 1 & \\ \hline 2 & 4 & 0 & \\ \hline 2 & 2 & 0 & \prod_{\text {MSB }} \\ \hline 2 & 1 & 0 & \end{array}$ $\therefore(34)_{10}=(100010)_{2}$ $\therefore(48)_{10}=(110000)_{2}$ Taking 2 's complement of $(48)_{10} \Rightarrow$ $\begin{array}{r} \text { is complement of }(48) 10 \\ +\quad \frac{1}{2 \text { s complement of }(48) 10}+001111 \\ +1111 \\ 010000 \end{array}$ Since $(34)_{10}-(48) 10=(34) 10+(-48) 10$ $\begin{aligned} &(34)_{10} \Rightarrow \begin{array}{l} 100010 \\ 010000 \\ (-20)_{10} \end{array} \\ & \hline 10010 \end{aligned}$ As carry is not generated answer is in negative form. Taking 2 's complement of answer. $\begin{aligned} & \text { i's complement of answer } \\ &+ \frac{001101}{+001110} \\ & \therefore \quad(34)_{10}-(48)_{10}=(-14)_{10} \end{aligned}$	2M
d) Ans.	Simplify the following Boolean expression i) $\mathbf{Y}=\mathbf{A B}+\mathbf{A B C}+\overline{\mathbf{A}} \mathbf{B}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}$ ii) $\mathbf{Y}=(\mathbf{A}+\mathbf{B})(\mathbf{A}+\overline{\mathbf{B}})(\overline{\mathbf{A}}+\mathbf{B})$ Note: Any other method of simplifying using the Boolean laws shall also be considered. i) $\begin{aligned} \mathbf{Y} & =\mathbf{A B}+\mathbf{A B C}+\overline{\mathbf{A}} \mathbf{B}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \\ & =\mathrm{AB}(1+\mathrm{C})+\overline{\mathrm{A}}(\mathrm{~B}+\overline{\mathrm{B}} \mathbf{C}) \end{aligned}$	4M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code: 22323

		$\begin{array}{ll} =\mathrm{AB}+\overline{\mathrm{A}}(\mathrm{~B}+\mathrm{C}) & \because 1+\mathrm{C}=\mathrm{C}, \mathrm{~B}+\overline{\mathrm{B}} \mathrm{C}=\mathrm{B}+\mathrm{C} \\ =\mathrm{AB}+\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{A}} \mathrm{C} & \\ =\mathrm{B}(\mathrm{~A}+\overline{\mathrm{A}})+\overline{\mathrm{A}} \mathrm{C} & \because \mathrm{~A}+\overline{\mathrm{A}}=1 \\ =\mathrm{B}(1)+\overline{\mathrm{A}} \mathrm{C} & \\ =\mathrm{B}+\overline{\mathrm{A}} \mathrm{C} \end{array}$ $\begin{aligned} \text { ii) } \begin{aligned} \mathbf{Y} & =(\mathbf{A}+\mathbf{B})(\mathbf{A}+\overline{\mathbf{B}})(\overline{\mathbf{A}}+\mathbf{B}) \\ & =(\mathrm{A} \cdot \mathrm{~A}+\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}+\mathrm{B} \overline{\mathrm{~B}})(\overline{\mathrm{A}}+\mathrm{B}) \\ & =(\mathrm{A}+\mathrm{A} \overline{\bar{B}}+\mathrm{AB}+0)(\overline{\mathrm{A}}+\mathrm{B}) \quad(\because \mathrm{A} \cdot \mathrm{~A}=\mathrm{A}, \mathrm{~B} \overline{\mathrm{~B}}=0) \\ & =\mathrm{A}(1+\overline{\mathrm{B}}+\mathrm{B})(\overline{\mathrm{A}}+\mathrm{B}) \quad(\because \mathrm{B}+\overline{\mathrm{B}}=1,1+\mathrm{A}=1) \\ & =\mathrm{A}(1)(\overline{\mathrm{A}}+\mathrm{B}) \quad \\ & =\mathrm{A}(\overline{\mathrm{~A}}+\mathrm{B}) \\ & =\mathrm{A} \overline{\mathrm{~A}}+\mathrm{AB} \\ & =0+\mathrm{AB} \\ & =\mathbf{A B} \end{aligned} \quad(\because \mathrm{A} \overline{\mathrm{~A}}=0) \\ \end{aligned}$	$2 M$ $2 M$
3.	a) Ans.	Attempt any THREE of the following: Draw 8086 architecture block diagram and state the functions of $E V$ and B / V. (Note: EV and B/V are considered as EU and BIU). Fig: Functional Block Diagram of Intel 8086 microprocessor	12 4M Diagram 2M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor Subject Code: 22323		
	BIU: It handles all transfers of data and addresses on the buses for the execution unit. - Sends out addresses - Fetches instructions from memory. - Read / write data from/to ports and memory i.e. handles all transfers of data and addresses on the busses EU: - Tells BIU where to fetch instructions or data from - Decodes instructions - Executes instructions OR The functions performed by the Bus interface unit are: - The BIU is responsible for the external bus operations. - It performs fetching, reading, writing for memory as well as I/O of data for peripheral devices. - The BIU also performs address generation and the population of the instruction queue. The Execution unit is responsible for the following work: - The instructions are decoded and executed by it. - The EU accepts instructions from the instruction queue and from the general purpose registers it takes data. - It has no relation with the system buses.	1M for BIU 1M for EU
b) Ans.	Design half adder using K-map and realize it using basic gate. Half Adder: Half adder is a combinational circuit that performs simple addition of two binary digits. Half Adder Truth Table: If we assume A and B as the two bits whose addition is to be performed, a truth table for half adder with \mathbf{A}, \mathbf{B} as inputs and Sum, Carry as outputs can be tabulated as follows.	4M 1M for Truth Table

SUMMER - 2019 EXAMINATION
MODEL ANSWER
Subject: Digital Techniques and Microprocessor \quad Subject Code: 22323

	Truth Table Input Output A B Sum Carry 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 K map for sum K map for Carry Carry=A.B Logic Diagram for Half Adder:				1M each for K map of sum and carry 1M for Logic Diagram

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor Subject Code: 22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code: \square 22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor \quad Subject Code: 22323

	- When first instruction is getting executed, second one's is decoded and third instruction code is fetched from memory. This process is known as pipelining. It improves speed of operation to great extent. Pipelining in 8086 Nonpipelined 8085 Pipelined in 8086 microprocessor	$\begin{array}{\|c} \text { Diagram } \\ 2 M \end{array}$
b) Ans.	Explain concept of physical address calculation with suitable diagram and examples. The 8086 addresses a segmented memory. The complete physical address which is 20 -bits long is generated using segment and offset registers each of the size 16-bit.The content of a segment register also called as segment address, and content of an offset register also called as offset address. To get total physical address, put the lower nibble 0 H to segment address and add offset address. The figure shows formation of 20-bit physical address. Fig: Physical address formation Calculate the physical address for the given $\mathrm{CS}=3420 \mathrm{H}$, $\mathrm{IP}=689 \mathrm{AH}$. CS=3420H	2M for explaina tion $1 M$ diagram

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code: 22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor Subject Code: 22323

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

		1. $\overline{\text { INTA }}:$ This is related to the non-vectored interrupt. It indicates that the processor has accepted INTR interrupt. 2. ALE: (Address Latch Enable): This signal is used to demultiplex the multiplexed the address and data at the falling edge of the ALE. i. If $\mathrm{ALE}=1=>\mathrm{AD} 0-\mathrm{AD} 15$ will form A0-A15 ii. If $\mathrm{ALE}=0 \Rightarrow \mathrm{AD} 0-\mathrm{AD} 15$ will form $\mathrm{D} 0-\mathrm{D} 15$. 3. $\overline{\text { DEN }}$ (Data Enable): It provides an output enable for the 8286 in a minimum mode which uses a transceiver. It is active LOW during each memory and I/O access and for INTA cycle. 4. DT/ $\overline{\mathbf{R}}$ (Data Transmit / Receive): It is an output signal which controls the direction of data flow through the transceivers. If it is at logic 1 the buffers are enabled to transmit data from the 8086. If it is at logic 0 the buffers are enabled to receive data. 5. M/Ī: It is used to distinguish a memory transfer or I/O transfer. For memory operation $\mathrm{M} / \mathrm{IO}=1$ and for I / O operation $\mathrm{M} / \mathrm{IO}=0$.	Diagram 4M Function of any 4 control signals 2M

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

	6. $\overline{\mathbf{W R}}$: It is used by the 8086 for outputting a low to indicate that the processor is performing a write memory or write I/O operation depending on the $M / \overline{I O}$ signal. 7. HOLD:This is s request signal which is given by peripheral device to the microprocessor to have control over address and data lines. 8. HLDA: If the microprocessor is ready to give the control of address and data lines to external device then it provides Hold Acknowledge.	
c) Ans.	List the addressing modes of 8086 and describe them with an example. Addressing Modes: 1. Immediate Addressing Mode 2. Register Addressing Mode 3. Direct Addressing Mode 4. Indirect Addressing mode 5. Register Indirect Addressing Mode 6. Based Addressing with displacement 7. Indexed Addressing Mode 8. Based Indexed Addressing Mode 9. Based Indexed Addressing with Displacement Mode 10. Fixed or Direct Port Addressing 11. Variable or Indirect Port Addressing 12. Implied (Implicit) Addressing Modes 1. Immediate Addressing Mode: In immediate addressing $8 / 16$ bit data is specified as a part of instruction or specified in the instruction itself. The immediate operand can be only source operand. Ex: MOV CL, 03H ADD AX, 1234H. 2. Register Addressing Mode: In this addressing mode the source and destination operand are specified in a register. The operand can be $8 / 16$ bit wide. The 8 bit operand can be any one of the register: $\mathrm{AL}, \mathrm{AH}, \mathrm{BH}, \mathrm{BL}, \mathrm{CH}, \mathrm{CL}, \mathrm{DH}, \mathrm{DL}$ and the 16 -bit operand can be AX, BX, CX, DX, SI, DI, SP. The 16-bit operand can be also be either of the segment registers. Ex: MOV AL, BL ADD CL, DL	List (any 4) $-2 M$ Any 4 descriptio $n-1 M$ each

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

MOV DS, AX

3. Memory Addressing Mode: The memory addressing mode is classified under two categories:

- Direct Addressing Mode: In this 16-bit offset address is provided in the instruction itself. Here [] refers the contents of the offset address.
Ex: MOV AL, [2000H]; MOV [1020], 5050H
- Indirect Addressing mode: In this mode the Effective address is calculated from the contents of one or two registers along with the displacement value. The indirect addressing mode is classified in five categories:
i. Register Indirect Addressing Mode: In this mode EA is provided in an index register or base register. The index register can be SI or DI and the base register can be BX.

EA $=[B X, S I, D I]$
Ex: MOV [DI], 1234H; MOV AX, [BX]
ii. Based Addressing with displacement: In this mode EA is sum of an $8 / 16$ bit displacement and the contents of base register (BX or BP).
Ex: MOV AX, [BX+300H]; MOV AX, [BX-2H]
iii. Indexed Addressing Mode: In this EA is the sum of the $8 / 16$ bit displacement plus the contents of the index registers SI or DI. Ex: MOV [DI + 2345H], 1234H; MOV AX, [SI + 45H]
iv. Based Indexed Addressing Mode: In this EA is the sum of base registers (BX or BP) and the indexed register (SI or DI) both which are specified in the instruction.
Ex: MOV [BX + DI], 1234H; MOV AX, [SI + BX]
v. Based Indexed Addressing with Displacement Mode: In this EA is the sum of base registers (BX or BP) and the indexed register (SI or DI) along with the $8 / 16$ bit displacement.
Ex: MOV [DI + BX + 37H], AX; MOV AL, $[\mathrm{BX}+\mathrm{SI}+278 \mathrm{H}]$
4. I/O Port addressing: There are two types of I/O port addressing:
i. Fixed or Direct Port Addressing: In this case a one byte port

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Subject: Digital Techniques and Microprocessor Subject Code: 223} \& 22323 \\
\hline \& \& \begin{tabular}{l}
address will be provided in the instruction. This allows fixed access to ports numbered 0 to \(255(00-\mathrm{FFH})\). \\
Ex: OUT 06H, AL; IN AX, 85H \\
ii. Variable or Indirect Port Addressing: In this case port address will not be explicitly in the instruction. The address of port number is taken from DX allowing 64 K 8 bit ports or 32 K 16 bit ports. This mode is known as variable or indirect port address. The 8 and 16 bit I/O data transfers should take place only through AL or AX. \\
Ex: IN AL, DX; OUT DX, AX. \\
5. Implied (Implicit) Addressing Modes: In this the instructions does not have any operand. \\
Ex: CLC, DAA
\end{tabular} \& \\
\hline 6. \& a)

Ans. \& | Attempt any TWO of the following: Define the following term with respect the digital IC's: |
| :--- |
| (i) Propagation delay |
| (ii) Fan in |
| (iii) Fan out |
| (iv) Power Dissipation |
| (v) Noise Margin |
| (vi) Threshold Voltage. |
| (i) Propagation delay: Propagation delay is defined as the time taken to obtain the O / P when the I/P is applied. It is given in nano seconds. $\left(1 \mathrm{~ns}=10^{-9} \mathrm{sec}\right)$. |
| The I / P and O / P wave forms of a logic gate are as follows: |
| The delay times are measured between 50% voltage levels of I/P \& O / P wave forms. There are 2 delay times $t_{P H L}$ when O / P goes from high to low $\& t_{P L H}$ when it goes from low to high. The propagation delay time of the logic gate is taken as the average of these 2 delay | \& Each definitio n 1M

\hline
\end{tabular}

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

	times. (ii) Fan in: Fan-In is defined as the number of inputs the gate has. For e.g. a two input gate will have fan-in equal to 2 . (iii) Fan out: Fan-out is the no. of similar gates which can be driven by the gate. High fan out is better as it reduces need for additional drivers to drive more gates (iv) Power dissipation: Power dissipation is the power required in mW in an IC. Low power requirement indicates low speed of operation \& vice versa. Hence, to select an IC, figure of merit is considered. It is the product of propagation delay \& power, i.e. ns x $\mathrm{mw}=\mathrm{pJ}$. The gate of the lowest fig. of merit is selected. (v) Noise margin: Some electric \& magnetic fields can induce unwanted voltages on the wires between logic circuits. They are called 'Noise Signals'. They may cause a change in VIH or VIL \& may produce undesired operation. The ability of circuit to tolerate these noise signals is called as Noise immunity. These are indicated by noise margins. If they are defined above, they are called DC noise margins. If the noise pulse width is less \& is approaching the propagation delay of circuit, it is called AC noise margin. (vi) Threshold voltage: For any logic family, there are a number of threshold voltage levels to know: 1. $\mathrm{V}_{\mathrm{OH}}-$ - Minimum OUTPUT Voltage level a TTL device will provide for a HIGH signal. 2. V_{IH}-- Minimum INPUT Voltage level to be considered a HIGH. 3. $\mathrm{V}_{\text {OL }}$-- Maximum OUTPUT Voltage level a device will provide for a LOW signal. 4. V_{IL}-- Maximum INPUT Voltage level to still be considered a LOW.	
b)	Write an assembly language program to arrange any array of 10 bytes in ascending order. Draw flowchart for the same. (Note: Any other logic shall also be considered).	6M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
SUMMER - 2019 EXAMINATION
MODEL ANSWER
Subject: Digital Techniques and Microprocessor \quad Subject Code: 22323

Ans.	Program: DATA SEGMENT ARRAY DB 15h,05h,08h,78h,56h, 60h, 54h, 35h, 24h, 67h DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS:DATA START:MOV DX, DATA MOV DS, DX MOV BL,0AH step1: MOV SI,OFFSET ARRAY MOV CL,09H step: MOV AL,[SI] CMP AL,[SI+1] JC Down XCHG AL,[SI+1] XCHG AL,[SI] Down : ADD SI,1 LOOP step DEC BL JNZ step1 MOV AH,4CH INT 21H CODE ENDS END START	
		Program
$4 M$		

SUMMER - 2019 EXAMINATION MODEL ANSWER

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor
Subject Code:
22323

