

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Principles of Database Subject Code: 22321

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
	(a)	List any four DBMS softwares.	2M
		(Note: Any four valid DBMS software can be considered)	
	Ans.	List of DBMS software are the followings:	
		i. Oracle RDBMS	Any
		ii. IBM DB2	four
		iii, Microsoft SQL Server	$^{-1/2}M$
		iv. MySQL	each
		v. MS Access	
		vi. SQLite	
		vii. PostgreSQL	
		viii. MongoDB	
		ix. SQL Developer	
		x. SAP Sybase SE	
	(b)	Define Domain and Attribute.	2M
	Ans.	A Domain is defined as the set of all unique values permitted for an	Each
		attribute.	definitio
		Attributes are the descriptive properties owned by each entity of an	n 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	entity set.		each
(c)	List and draw any four	symbols used in ER-Model.	2M
Ans.	Different symbols used	in ER-Model are the following:	
		Represents Entity	
		Represents Attribute	
	$\langle \rangle$	Represents Relationship	Any
		Links Attribute(s) to entity set(s) or Entity set(s) to Relationship set(s)	four symbol
		Represents Multivalued Attributes	^{1/2} M each
		Represents Derived Attributes	
		Represents Total Participation of Entity	
		Represents Weak Entity	
		Represents Weak Relationships	
		Represents Composite Attributes	
		Represents Key Attributes / Single Valued Attributes	
(d)	Define Constraint.		2M
Ans.		es enforced on the data columns of a table. the type of data that can go into a table. This	
	2	d reliability of the data in the database.	Definitio
		ther on a column level or a table level. The	n 2M
		s are applied only to one column, whereas the re applied to the whole table.	
			27.5
(e)		any two advantages of database system. zed collection of data so that it can be easily	2M Definitio
Ans.	accessed, managed and t		n 1M
	Advantages of databas	e system are the following:	
	23	dancy of data in a centralized system of	Any two
	DBMS	,	advanta
	2. Integrity of data car enforcing constraints	n be enforced in case of database system by	ges ^{1/2} M each

(Autonomous) - 27001 - 2005 Certified)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		 Inconsistency of data can be avoided by reducing duplicacy or redundancy Data can be shared by multiple applications in centralized DBMS Standards can be enforced in DBMS is a central system by enforcing standards easily at Company level, Department level, National level or International level. Restricting unauthorized access among multiple users when sharing of data takes place in a database. Providing Backup and Recovery facilities is provide by DBMS for recovering from hardware or software failures. 	
	(f)	Define database model.	2M
	Ans.	Definition of database model: A database model is a type of data model that determines the logical structure of a database. It also fundamentally determines in which manner data can be stored, organized and manipulated.	Definitio n 2M
	(g)	List advantages of Normalization.	2M
	Ans.	List of Advantages of Normalization are the following:	
		 More efficient data structure. Avoid redundant fields or columns. More flexible data structure i.e. we should be able to add new rows and data values easily Better understanding of data. Ensures that distinct tables exist when necessary. Easier to maintain data structure i.e. it is easy to perform operations and complex queries can be easily handled. Minimizes data duplication. Close modeling of real world entities, processes and their relationships. 	Any two advanta ges 1M each
2.	(a)	Attempt any THREE of the following: Define data abstraction. Explain the levels of data abstraction	12 4M
	(a)	with neat diagram.	-71VI
	Ans.	 Data abstraction is defined as Suppression of details of data organization and storage Highlighting of the essential features for an improved understanding of data The characteristic that allow program data independence and program operation independence is called data abstraction. 	Definitio n 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

-					
		Three le	evels of abstraction are:		
		describe		level of data abstraction. It in database. The complex data rel.	Levels 2M
		architect		vel of 3-level data abstraction is stored in database and the	
			evel: This is highest level of the user interaction with data	of data abstraction. This level abase system.	
				View n	Diagram 1M
			logical level		
			Three Levels of data abstraction		
	(b)	_	nish between network dat e model.	abase model and relational	4M
	Ans.	Sr. No.	Network database model	Relational database model	
		1	Relationship between records is expressed in the form of pointers or links	Relationship between records is represented by a relation that contains a key for each record involved in the relationship.	Any four
		2	Many to many relationship can also be implemented	Many to many relationship can be easily implemented	points 1M each
		3	Record relationship implementation is very complex due to use of pointers	Relationship implementation is very easy through the use of a key or composite key fields	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	A Network model is useful for representing such records which have many to many relationships 5 In Network model also the record relations are physical 6 Example: Author Author B Book 2 Book 3 Book 3	
(c) Ans.	Describe enhanced ER model with the help of example. Enhanced ER is a high-level data model that incorporates the extensions to the original ER model. It is created to design more accurate database schemas. EER reflects data properties and constraints more precisely. It also includes more complex requirements than traditional application. It is a diagrammatic technique for displaying the following concepts Sub Class and Super Class Specialization and Generalization Union or Category Aggregation These concepts are used when they comes in EER schema and the resulting schema diagrams called as EER Diagrams. For example: Square, Circle, Triangle are the sub class of Shape super class.	4M Descript ion 3M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	Typing speed) Tarada	Engineer' Eng_type	Diagram IM
(d)	Compare file system and databas	se system	4M
Ans.	File system	Database system	71/1
	1. File processing don't contain any self describing feature and neither posses metadata.	·	
	2. In file processing, if any changes to the structure of a file may require changing all programs that access the file	-	Any four points IM each
	3. File processing system don't support multiple views.	3.Support of multiple views of the data i.e. Each user may see a different view of the database, which describes only the data of interest to that user	
	4. It is not possible to share data and multi user transaction simultaneously among concurrent users in case of file processing system	4. Sharing of data and multi- user transaction processing i.e allowing a set of concurrent users to retrieve from and to update the database.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	1		1
		5. The traditional file approach, 5. Controlling Redundancy is	
		each group independently keeps one of most important feature to	
		their own file. use DBMS	
3.		Attempt any THREE of the following:	12
.	(a)	Explain any four Codd's rules.	4M
	Ans.	Codd's rules:	7111
	Alls.		
		Rule 1: The information rule	_
		According to E.F. codd's first rule, the whole data has to be presented	Any
		to the user should be in the form of table.	four
			rules
		Rule 2 : Guaranteed Access Rule	1M each
		Whole data should be available or accessible to the user without any	
		ambiguity. The ambiguity can be avoided only through the perfect	
		combination of the table name, primary key, and column name.	
		Rule 3: Systematic treatment of null values	
		The null values i.e. absence of the values in the table should be	
		treated properly. The table should allow a field to remain empty. This	
		is not applicable to primary keys. Key columns cannot have null	
		values.	
		values.	
		Rule 4: Active on-line catalog based on the relational model	
		Fourth rule specifies need of dynamic on-line catalog based on the	
		relational model. There are certain system tables that stores the	
		database definition should be present. The data accessing tools should	
		be used to access the database structure information.	
		Rule 5: The comprehensive data sub language rule: The system	
		must support at least one relational language that Has a linear syntax	
		Can be used both interactively and within application programs,	
		Supports data definition operations (including view definitions), data	
		manipulation operations (update as well as retrieval), security and	
		integrity constraints, and transaction management operations (begin,	
		commit, and rollback).	
		Commit, and folloack).	
		Dale Co The advanced advanced All 1 1 1 1	
		Rule 6: The view updating rule: All views those can be updated	
		theoretically, must be updated by the system.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Prin	ciples of Database Subject Code: 22	2321	
	Rule 7: High-level insert, update, and delete: A database must support high-level insertion, updation, and deletion. This must not be limited to a single row, that is, it must also support union, intersection and minus operations to yield sets of data records		
	Rule 8: Physical data independence: Changes to the physical level (how the data is stored, whether in arrays or linked lists etc.) must not require a change to an application based on the structure.		
	Rule 9: Logical data independence: Changes to the logical level (tables, columns, rows, and so on) must not require a change to an application based on the structure. Rule 10: Integrity independence: Integrity constraints must be specified separately from application programs and stored in the catalog. It must be possible to change such constraints as and when appropriate without unnecessarily affecting existing applications.		
	Rule 11: Distribution independence: The distribution of portions of the database to various locations should be invisible to users of the database. Existing applications should continue to operate successfully: when a distributed version of the DBMS is first introduced; and when existing distributed data are redistributed around the system.		
	Rule 12: The non subversion rule: If the system provides a low-level (record-at-a-time) interface, then that interface cannot be used to subvert the system, for example, bypassing a relational security or integrity constraint.		
(b)	Describe functional dependency with example.	4M	[
Ans.	(Note: Any other example shall be considered) A functional dependency occurs when one attribute in a relation uniquely determine another attribute.		
	(OR)		
	A relation say R attribute X is functionally dependent on attribute Y if every value in X in the relation has exactly one value of Y in the given relation.	Descr ion 2	-
	The functional dependency is represented as $X \rightarrow Y$, which specifies Y is functionally dependent on X or X attribute functionally determine		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		1
	the attribute Y.	
	Example:	
	Consider table : Employee(Emp_Id, Emp_Name, Emp_Address)	
	Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the Emp_Id, we can tell that employee name associated with it.	Example 2M
	Functional dependency can be written as: Emp Id → Emp Name	
(c)	Explain different types of attributes.	4M
Ans	 Types of Attributes: Simple attributes: Attributes that cannot be subdivided (i.e are atomic) into subparts are called as simple attributes. E.g. Enroll_no, RollNo 	
	2) Composite Attributes: The attributes which can be divided into subparts are called composite attributes. E.g. attribute name could be structured as a composite attribute consisting of first_name,middle_name and last_name	Any four types with correct
	3) Single Valued Attributes: The attribute has single value for a particular entity called as single valued attribute. E.g. Student_id	explanat ion 1M each
	4) Multivalued Attributes: The attribute has set of values for a specific entity called as multi valued attribute. E.g: Phone_no is multivalued attribute because employee may have zero, one or several phone no.	
	5) Derived Attribute: The value for this type of attribute can be derived from the values of other related attributes or entities. E.g. Customer entity has attribute age and date_of_birth. We calculate age from date_of_birth and current_date. Here age is derived attribute and date_of_birth is base or stored attribute	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		ı
	6) Stored Attribute:	
	The stored attributes are such attributes which are already stored in	
	the database and from which the value of another attribute is derived	
	is called stored attribute. For example: date_of_birth is a stored	
	attribute from which age can be derived.	
	7) Null Attribute:	
	An attribute takes a null value when an entity does not have a value	
	for it. Null can indicate "not applicable"- that is value does not exist	
	for the entity.	
	E.g apartment_no	
(d)	Explain different operations performed with Data Definition	4M
()	Language.	
Ans.	DDL Operations:	
1 11150	1. Create	
	2. Alter	
	3. Drop	
	4. Rename	
	5. Truncate	
	1) Create: It's a DDL statement of SQL and is used to create a table	
	in the database. It creates an empty structure of the table.	
	Syntax:	
	Create table (column1 datatype[(size]),	
	column2 datatype[(size]),	
	column3 datatype[(size)],);	Any 4
	Example:	operatio
	Create table employee (empno number(5), ename varchar2(20), Salary	ns 1M
	number(8,2));	each
	2) Alter: It is used to add new attributes or to modify the existing	
	attribute in the table structure.	
	Syntax for add option:	
	alter table	
	add(columnName1 datatype(size)	
	columnName2 datatyp(size)	
	columnNameNdatatyp(size)	
);	
	Example:	
	alter table emp add(sal number(8,2));	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

			1
		Syntax for modify option:	
		alter table modify (<columnname1><data< th=""><th></th></data<></columnname1>	
		type>(<size>));</size>	
		Example:	
		alter table emp modify sal number(10,2);	
		3) Rename: This command is used to rename a table, view, sequence	
		or a synonym.	
		Syntax of Rename command:	
		rename <oldtable_name> to <newtable_name>;</newtable_name></oldtable_name>	
		Example:	
		rename employee to employee details;	
		r - J r - J <u> </u>	
		4) Drop: The DROP command removes a table from the database.	
		All the tables' rows, indexes and privileges will also be removed. No	
		DML triggers will be fired. The operation cannot be rolled back.	
		Syntax:	
		drop table ;	
		Example: drop table emp;	
		,	
		5) Truncate: Truncate command is used to remove all rows from a	
		table and to release the storage space used by the table keeping the	
		table definition intact.	
		Syntax:	
		truncate table ;	
		Example: truncate table emp;	
4.		Attempt any THREE of the following:	12
"	(a)	Explain BCNF with example.	4M
	(a)	(Note: Any other example shall be considered)	11 7.I
	Ans.	BCNF:	
	1 1115.	Boyce Codd Normal Form (BCNF) is considered a special condition	
		of third Normal form. A table is in BCNF if every determinant is a	Explana
		candidate key. A table can be in 3NF but not in BCNF. This occurs	tion 2M
		when a non key attribute is a determinant of a key attribute	417 1
		when a non key attribute is a determinant of a key attribute	
		Example of BCNF:	
		Let's assume there is a company where employees work in more than	
		one department.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	EMPLOYEE(EMP_ID,EMP_COUNTRY,EMP_DEPT, DEPT_TYPE,EMP_DEPT_NO)	Evample
	In the above table Functional dependencies are as follows:	Example 2M
	$1.EMP_ID \rightarrow EMP_COUNTRY$	
	$2.EMP_DEPT \rightarrow \{DEPT_TYPE, EMP_DEPT_NO\}$	
	Candidate key: {EMP-ID, EMP-DEPT}	
	The table is not in BCNF because neither EMP_DEPT nor	
	EMP_ID alone are keys.	
	To convert the given table into BCNF, we decompose it into three tables:	
	1.EMP COUNTRY table: EMP ID \rightarrow EMP COUNTRY	
	2.EMP DEPT table: EMP DEPT → {DEPT TYPE,	
	EMP_DEPT_NO}	
	3. EMP_DEPT_MAPPING table: EMP_ID, EMP_DEPT	
	Functional dependencies:	
	1. EMP_ID → EMP_COUNTRY	
	2. EMP DEPT → {DEPT TYPE, EMP DEPT NO}	
	Candidate keys: For the first table: EMP ID	
	For the second table: EMP_DEPT	
	For the third table: {EMP ID, EMP DEPT}	
	Now, this is in BCNF because left side part of both the functional	
	dependencies is a key.	
(b) Ans.	Explain client/server database system.	4M
		Correct explanat
	Client Server with database	ion 4M
	Client/Server Database System	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Prin	ciples of Database	Subject Code:	22321	
	 It has two logical parts -client and server. Computer networking allows some task to be system and some tasks on client system and some tasks on client system development of client server architecture. Server is the machine which serves to the client access, printing, and database access. It is database tables optimally among muconcurrently request the server for the same. The clients are the machines which requests server. There are different types of client/server arc. Two tier architecture. In two tier architecture, client systems directly servers whereas in three tier architecture, there layer which acts as application server to recein from client machine to database server and visited. 	tem. This leads tents. It machine such as a used to manage altiple clients where data. It for the service to thit ecture such as the exists a middle we and send reques	to file the the the the	
(c) Ans.	Explain terms primary key and candidate key Primary Key: A primary key is an attribute in Relation that a rows in relation. A Primary key does not ho duplicate values. OR A key which is selected by the designer to unique is called as Primary key. A primary key can values and it can never contain null values inside Example: In a Student table(Rollno,Name,Percentage), leey	uniquely identifies ald NULL values a uely identify the en not contain duplice it.	the and Eddefit defit ate ary	ach initio n M
	Candidate key: In a relation there may be a key or combinuniquely identify the record. Such a key is called <i>Example:</i> Consider a Student table (Rollno,Name,Perand(Name)both are unique then both are identified.	d as Candidate key.	exa 1 ich	acn mple M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	OR	
	Consider a Student table (Rollno, Name, Percentage), if (Rollno,	
	Name) is unique, then (Rollno, Name) can be a candidate key if and	
	only if Name and Rollno individually are not unique.	
(d)	Explain entity integrity constraint with example.	4M
Ans.	Entity integrity constraint:	
	1) Unique key constraint: It avoids the duplication of values within	
	the rows in table. It allows null values.	Each
	Syntax:	constrai
	Create table <table_name></table_name>	nt
	(column name1 datatype(size),	explanat
	column_name2 datatype(size) constraint <constraint_name></constraint_name>	ion 1M
	unique,	
		
	column_name n datatype(size)	
);	
	Example:	Each
	create table dept	example
	(deptno number(5) constraint dept_deptno_uk unique,	<i>1M</i>
	dname varchar2(20),	
	loc varchar2(20));	
	2) Primary key constraint: Primary key constraint can be assigned	
	on one or more columns in a table used to uniquely identifies the each	
	row in table. It avoids duplication of rows and do not allow null	
	values.	
	Syntax:	
	Create table <table_name></table_name>	
	(column name1 datatype(size), column name2 datatype(size) constraint <constraint name=""></constraint>	
	primary key,	
	primary kcy,	
	column name n datatype(size)	
); Example:	
	create table dept	
	(deptno number(5) constraint dept_deptno_pk primary key,	
	dname varchar2(20),	
	loc varchar2(20));	
	100 valenai 2(20)),	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

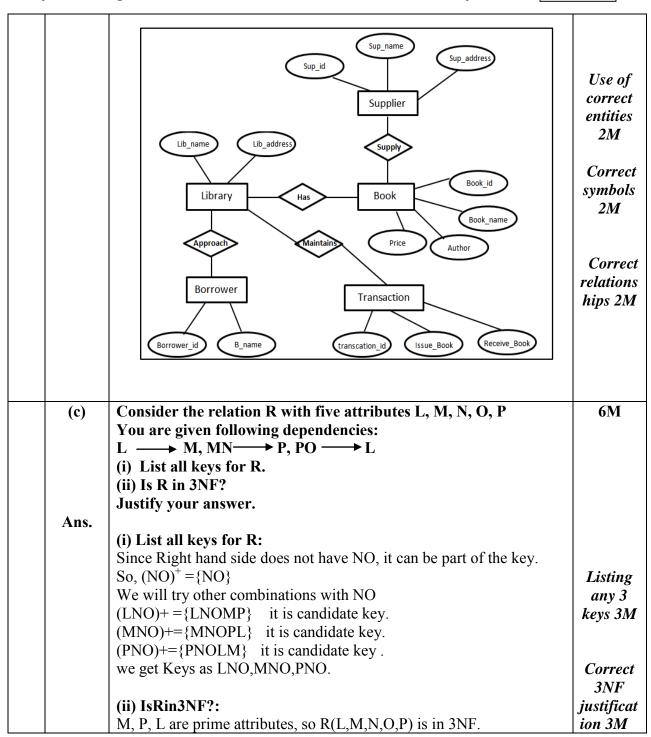
Subject: Principles of Database	Subject Code: 22321	
---------------------------------	---------------------	--

	(e)	Describe centralized database system with example.	4M
		(Note: Any other example shall be considered).	
	Ans.	Centralized Database System:	
		1. A centralized database consists of a single data server into which	
		all data are stored and from which all data are retrieved. All the	
		data reside at a single location and all applications must retrieve all data from that location.	
		2. The centralized database system consists of a single processor	Descript
		together with its associated data storage devices and other	ion 2M
		peripherals. It is physically confined to a single location.	ton 2111
		3. Data can be accessed from the multiple sites with the use of a	
		computer network while the database is maintained at the central	
		site	
		Following are the advantages of centralised database system:	
		 The data integrity is maximized 	
		The data redundancy is minimal.	
		 Centralized database is much more secure. 	
		 Data is easily portable because it is stored at the same place. 	
		 The centralized database is cheaper than other types of 	
		databases as it requires less power and maintenance.	
		Example:	
		Consider a company developing a project. As the project consist of	
		many different types of information like documents, plans, diagrams,	
		etc. Instead of having it stored on every project member's system it	Example
		can be stored in a database on server which can act as a centralized	2M
		database from which all the project members will assess the	
		information acting as clients.	
5.		Attempt any TWO of the following:	12
	(a)	Consider a single table consisting following columns. Convert it	6M
		into 2NF and 3NF Table:	
		(supplier_no, supplier_name, supplier_city, order_no, order quantity, order amount, product code, product name)	
	Ans.	Given Table Schema - (supplier no, supplier name, supplier city,	
	Alls.	order no, order quantity, order amount, product code,	
		product name)	
		[F	
		Second Normal Form (2NF):	
		To convert it into 2NF, We have to decompose the given table into	
		two tables with fully functional dependencies and establishing a	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER


Subj	,cct. 1 1 1111	Subject Couc.		
		referential integrity constraint relationship among the two tables.		
		Table 1- Supplier Details	2NF 3M	
		Table 2 - Order Details		
		(order_no, order_ quantity, order_amount, product_code,		
		product_name)		
		Now the above two tables are in 2NF.		
		Third Normal Form (3NF):		
		To convert the above tables in 3NF, We have to decompose them in		
		three tables satisfying the transitive dependencies property.		
		Table 1- Supplier Details	3NF 3M	
		(supplier_no ,supplier_name,supplier_city)		
		Table 2- Product Details		
		(product_code,product_name)		
		Table 3- Transaction(Order) Details		
		(order no, product code, supplier no, order quantity, order amount)		
		Hence the above three tables are satisfying Transitive dependencies		
		Thus they are in 3NF.		
	(b)	Draw ER diagram of library management system in which	6M	
	(D)	library maintain the data of books, borrowers, issue return	OIVI	
		details, fine collection, supplier of books etc. Assume suitable data		
	A	and display the relationship among entities.		
	Ans.			
1				
			l	

(Autonomous)

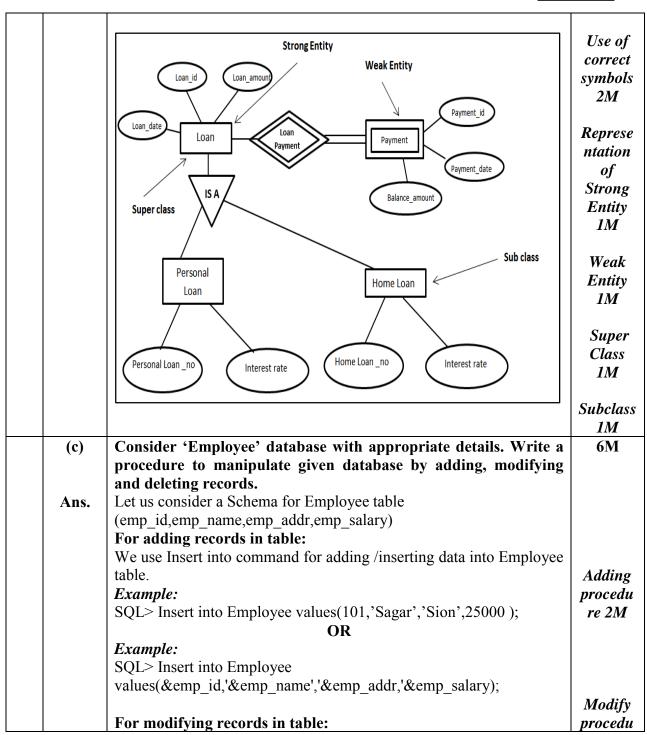
(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER


6. (a) Ans.	Attempt any TWO of the following: Consider the following schemas: (i) Dept (Dept_no, Dept_name, Dept-loc) (ii) Staff (Staff_id, Staff_name, Dept_no, Joint_date) Draw and explain parent-child relationship for above schemas and find out foreign key with justification. Parent -Child Relationship Diagram for given Schema is as follows: Parent table: Dept	12 6M
	Dept_no Dept_name Dept_loc	
	1: N Child table: Staff	Diagram 3M
	Staff_id Staff_name Dept_no Join_date	01/2
	Foreign key	
	Fig: Parent Child Relationship diagram	Identific
	Foreign key: Dept_no is Foreign key for table Staff	ation of Foreign key 1M
	Justification: As per above schemas, Dept table is parent table and Staff table is child table.	·
	Dept_no is primary key for Dept table. There exist Dept_no as a common attribute in both the tables Dept and Staff. Staff_id is primary key for Staff table. So, Dept_no is foreign key for table Staff.	, Justifica tion 2M
(b)	Draw enhanced ER diagram for loan payment system. Consider the following entities: (i) Loan (Loan_id, Loan_amount, Loan_date) (ii) Payment (payment_id, Payment_date, Balance_amount) (iii) Personal Loan (Personal Loan_no, Interest rate) (iv) Home Loan (Home Loan_no, Interest rate)	6M
Ans.	Show strong entity set, weak entity set, super class and sub class.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

We use update command for modifying data of Employee table. <i>Example</i> : SQL> update Employee set salary=30000 where emp_id=3;	re 2M
For deleting records from table: We use delete command for deleting data of Employee table. Example: SQL>delete from Employee where emp_id=4;	Delete procedu re 2M