WINTER-18 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 1 of 16

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 2 of 16

$\begin{aligned} & \mathrm{Q} \\ & \text { no } \end{aligned}$	$\begin{gathered} \text { Sub } \\ \text { q.no. } \end{gathered}$	Answer	marks
	1	Any 5	10
1	a	Units of temperature: Degree Celsius $\left({ }^{0} \mathrm{C}\right)$ Degree Fahrenheit $\left({ }^{0} \mathrm{~F}\right)$ Kelvin(K)	2
1	b	Vander Waal's equation of state: $\left(\mathrm{P}+\mathrm{a} / \mathrm{V}^{2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{nRT}$ Where $\mathrm{a} \& \mathrm{~b}$ are constants. $\begin{aligned} & \mathrm{a}=27 \mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}^{2} / 64 \mathrm{P}_{\mathrm{c}} \\ & \mathrm{~b}=\mathrm{RT}_{\mathrm{c}} / 8 \mathrm{P}_{\mathrm{c}} \end{aligned}$ Tc \& Pc = Critical Temperature and Pressure	2
1	c	Steady state operation: Operations in which there is no buildup of mass and energy within the system as well as there is no variation or change in operating conditions of the system with time. Unsteady state operation: Operations in which buildup of mass and energy within the system as well as variation or change in operating conditions of the system with time.	1 1
1	d	Stoichiometric coefficient $\mathrm{FeS}_{2}=4$ $\begin{aligned} & \mathrm{O}_{2}=11 \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}=2 \\ & \mathrm{SO}_{2}=8 \end{aligned}$	$1 / 2$ mark each
1	e	Net Calorific value(NCV): It is the calorific value of the fuel when the	1

Subject Title: Industrial Stoichiometry
Subject code
22315
Page $\mathbf{3}$ of 16

\begin{tabular}{|c|c|c|c|}
\hline \& \& water in the combustion products is present in vapour form Gross Calorific value(GCV): It is the calorific value of the fuel when the water in the combustion products is present in liquid form \& 1 \\
\hline 1 \& f \& \begin{tabular}{l}
Different forms of energy: \\
1. Energy related to the system: kinetic energy, potential energy, internal energy, pressure energy, surface energy \\
2. Energy associated with the product: heat, work
\end{tabular} \& 1
1 \\
\hline 1 \& g \& \[
\begin{aligned}
\& \text { 3 atm } \\
\& =3^{*} 101.325=303.975 \mathrm{kPa} \\
\& =3^{*} 760=2280 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
\] \& 1
1 \\
\hline 2 \& \& Any 3 \& 12 \\
\hline 2 \& a \& \begin{tabular}{l}
SI units of: \\
1. Energy: Joule(J) \\
2. Power: Watt(W) \\
3. Heat: Joule(J) \\
4. Work: Joule(J)
\end{tabular} \& 1 mark each \\
\hline 2 \& b \& Basis:Gas in a closed vessel at 299 K
\[
\begin{aligned}
\& \mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \\
\& \mathrm{P}_{1}=121.59 \mathrm{kPa} \mathrm{~g}=121.59+101.325=222.915 \mathrm{kPa} \text { absolute } \\
\& \mathrm{V}_{1}=\mathrm{V}_{2} \\
\& \mathrm{~T}_{1}=299 \mathrm{~K} \\
\& \mathrm{P}_{2}=? \\
\& \mathrm{~T}_{2}=1273 \mathrm{~K} \\
\& 222.915 / 299=\mathrm{P}_{2} / 1273 \\
\& \mathrm{P}_{2}=\mathbf{9 4 9 . 0 7} \mathbf{~ k P a}
\end{aligned}
\] \& 1
1

1
1

\hline 2 \& c \& Basis: 100 kg of groundnut seeds. \&

\hline
\end{tabular}

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 4 of 16

			1
2	d	Basis 100 mol of ethylene Reaction $\mathrm{IC}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ Reaction II C2 $\mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 5 of 16

		From reaction I 1 Kmol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted $\therefore \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ reacted to from $80 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ $\begin{aligned} & =\frac{1}{1} \times 80 \\ & =80 \mathrm{Kmol} \end{aligned}$ From reaction II 2 kmol of CO_{2} formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ reacted to form $10 \mathrm{kmol} \mathrm{CO}_{2}$ $\begin{aligned} & =\frac{1}{2} \times 10 \\ & =5 \mathrm{Kmol} \end{aligned}$ $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ totally reacted $=80+5=85$ $\therefore \%$ conversion of $\mathrm{C}_{2} \mathrm{H}_{4}=\frac{85}{100} \times 100$ $=85 \%$ $\%$ yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}=\frac{80}{85} \times 100$ $=\mathbf{9 4 . 1 2 \%}$	1 1 1
3		Any 3	12
3	a	Basis: 100 kmol of flue gas. It contains $13.4 \mathrm{kmol} \mathrm{CO}_{2}, 80.5 \mathrm{kmol}_{2}$ and $6.1 \mathrm{kmol} \mathrm{O}_{2}$ N_{2} in supplied air $=\mathrm{N}_{2}$ in flue gas $=80.5 \mathrm{kmol}$ Air contains $79 \% \mathrm{~N}_{2}$ by volume. Amount of air supplied $=80.5 / 0.79=101.9 \mathrm{kmol}$ Amount of O_{2} in supplied air $=0.21 \mathrm{X} 101.9=21.4 \mathrm{kmol}$ Amount of O_{2} in flue gas $=6.1 \mathrm{kmol}$ Amount of O_{2} consumed in combustion of fuel $=21.4-6.1=15.3 \mathrm{kmol}$	1 1 1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 6 of 16

		$\begin{aligned} & \text { \% excess air }=\% \text { excess } \mathrm{O}_{2} \\ & \text { Present excess air supplied }=(21.4-15.3) / 15.3 \quad \mathrm{X} 100 \\ & =\mathbf{3 9 . 9} \% \text {------ Ans. } \end{aligned}$	1
3	b	```Basis: \(100 \mathrm{Kmol} / \mathrm{min}\) of \(\mathrm{CO}_{2}\) \(\mathrm{Q}=\) Heat added \(\mathrm{T}_{2}\) \(=\mathrm{n} \int \mathrm{CpdT}\) \(\mathrm{T}_{1}\) \(\mathrm{T}_{2}\) \(=\mathrm{n} \int\left[21.3655+64.2841 \times 10^{-3} \mathrm{~T}-41.0506 \times 10^{-6} \mathrm{~T}^{2}+\right.\) \(\left.\mathrm{T}_{1} \quad 9.7999 \times 10^{-9} \mathrm{~T}^{3}\right] \mathrm{dT}\) \(=\mathrm{n}\left[21.3655\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+64.2841 \times 10^{-3} / 2\left(\mathrm{~T}^{2}{ }_{2}-\mathrm{T}^{2}{ }_{1}\right)\right.\) \(\left.-41.0506 \times 10^{-6} / 3\left(\mathrm{~T}^{3}{ }_{2}-\mathrm{T}^{3}{ }_{1}\right)+9.7999 \times 10^{-9} / 4\left(\mathrm{~T}^{4}{ }_{2}-\mathrm{T}^{4}{ }_{1}\right)\right]\) Where \(\mathrm{n}=100 \mathrm{kmol} / \mathrm{min}, \mathrm{T}_{2}=383 \mathrm{~K}, \mathrm{~T}_{1}=298 \mathrm{~K}\) \(=100\left[21.3655(383-298)+64.2841 \times 10^{-3} / 2\left(383^{2}-298^{2}\right)-41.0506 \mathrm{x}\right.\) \(\left.10^{-6} / 3 \quad\left(383^{3}-298^{3}\right)+9.7999 \times 10^{-9} / 4\left(383^{4}-298^{4}\right)\right]\) \(=330335.5 \mathrm{KJ} / \mathrm{min}\) \(=5505.6 \mathrm{KJ} / \mathrm{s}\) Q = 5505.6 KW -------------- Ans.```	1
3	c	Recycling: It is returning back a portion of stream leaving a process unit to the entrance of the process unit for further processing. Reasons for performing recycling: (any four) 1. Maximum utilization of the valuable reactant 2. Improvement of the performance of the equipment/ operation	2

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page $\mathbf{7}$ of 16

Model Answer

Subject Title: Industrial Stoichiometry Subject code

22315
Page 8 of 16

		the feed may be directed around the dehydrator in a bypass loop, to be mixed with unprocessed feed. Or any other example	
3	d	Basis: 100 kmol gas sample $\begin{aligned} \text { Avg. mol.wt of air } & =\mathrm{M}_{1} \mathrm{X}_{1}+\mathrm{M}_{2} \mathrm{X}_{2} \\ & =32 * 0.21+28 * 0.79 \\ & =\mathbf{2 8 . 8 4} \end{aligned}$ $\begin{aligned} \text { Density } & =\mathrm{P} * \text { Mav } / \mathrm{RT} \\ & =1519.875 * 28.84 / 8.314 * 503 \\ & =\mathbf{1 0 . 4 8} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}} \end{aligned}$	1 1 1 1
4		Any 3	12
4	a	$\begin{aligned} & \text { Basis: } 1 \mathrm{~mol} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \cdots--\cdots---\mathrm{Na}_{2} \mathrm{OFe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\ & \Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}=\text { Standard heat of reaction } \\ & =\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { reactant }-\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { product } \\ & =[1 \times(-1130.68)+1 \mathrm{x}(-817.3)]-[1 \times(-1412.2)+1 \times(-393.51)] \\ & =-1947.98+1805.71 \\ & =-\mathbf{1 4 2 . 2 7} \mathrm{KJ} \end{aligned}$	1 1 1 1
4	b	Basis: 100 kmoles of producer gas $\mathrm{CO}+1 / 2 \mathrm{O}_{2}--\mathrm{CO}_{2}$ O_{2} Theoretical $=27 / 2=13.5 \mathrm{kmoles}$ O2 required $=13.5-1=12.5$ kmoles $\%$ excess $\mathrm{O}_{2}=\left(\mathrm{O}_{2}\right.$ fed $-\mathrm{O}_{2}$ theoretical $) \times 100 / \mathrm{O}_{2}$ theoretical $20=\left(\mathrm{O}_{2}\right.$ fed-12.5 $) \times 100 / 12.5$ O_{2} fed $=15 \mathrm{kmoles}$	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 9 of 16

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 10 of 16

		Inert gas in gas entering tower = Inert gas in gas leaving tower 2. For solute gas Solute gas in inlet gas - solute gas in lean gas $=$ solute gas absorbed	1
4	d	Basis : 100 Kmol of feed Feed contains $60 \mathrm{kmol} \mathrm{A}, 30 \mathrm{kmol}$ B and 10 kmol inerts Let X be the kmol of A reacted by reaction : $2 A+B----C$ From reaction $2 \mathrm{kmol} \mathrm{A}=1 \mathrm{kmol} \mathrm{B}=1 \mathrm{kmol} \mathrm{C}$ B reacted $=(1 / 2) * X=0.5 \mathrm{X}$ kmol C formed $=(1 / 2) * X=0.5 X \quad \mathrm{kmol}$ Material Balance of A give $\text { A unreacted }=(60-X) \mathrm{kmol}$ Material Balance of Inerts : Inerts in feed $=$ Inert in product $=10 \mathrm{kmol}$ C formed $=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} \mathrm{kmol}$ B unreacted $=(30-0.5 \mathrm{X}) \mathrm{kmol}$ Total moles of product stream $=(60-\mathrm{X})+(30-0.5 \mathrm{X})+10=0.5 \mathrm{X}$ $=100-\mathrm{X} \mathrm{Kmol}$ Mole $\%$ of A in product stream $=2 \%$ Kmol A in product stream Mole \% of $\mathrm{A}=$ \qquad * 100 Total kmol of product stream	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 11 of 16

			1
4	e	$\begin{aligned} & \text { Heat required (sensible heat) } \mathrm{Q}=\mathrm{mCp}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\ & \mathrm{m}=100 \mathrm{~kg} \\ & \mathrm{Cp}=4.187 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\ & \mathrm{~T} 1=40+273=313 \mathrm{~K} \\ & \mathrm{~T} 2=90+273=363 \mathrm{~K} \\ & \mathrm{Q}=100 \mathrm{~kg} \mathrm{x} 4.187 \mathrm{~kJ} / \mathrm{kgK} \times(363-313) \mathrm{K} \\ & =\mathbf{2 0 9 3 5} \mathbf{~ k J} \end{aligned}$	1 1 1
5		Any 2	12
5	a	Basis: 0.577 mol fr of acetone in.the mixture Mol fr. of butane $=1-0.577=0.423$ Partial pr of butane $=698 \mathrm{~mm} \mathrm{Hg}$ Applying Raoults law to butane Partial $\mathrm{pr}=\mathrm{Mol} \mathrm{fr}$ * vapour pr Vapour pressure $=$ Partial pressure $/ \mathrm{mol} \mathrm{fr}$ $=698 / 0.423$	2 1 1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 12 of 16

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 13 of 16

		Solving the above three equations, we get $\begin{aligned} & X=416.89 \\ & Y=389.65 \\ & Z=193.46 \end{aligned}$ Amount of waste acid required $=416.89 \mathrm{~kg}$ Amount of concentrated sulphuric acid required $=389.65 \mathrm{~kg}$ Amount of concentrated nitric acid required $=193.46 \mathrm{~kg}$	1 1
5	c	Basis: 100 kmol cyclohexane $\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2}---\mathrm{C}_{6} \mathrm{H}_{12}$ Cyclohexane produced $=100 \mathrm{kmol}$ Benzene reacted to produce 100 kmole cyclohexane $=100 \mathrm{kmoles}$ Yield of cyclohexane $=90 \%$ $90=\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ reacted to produce $\mathrm{C}_{6} \mathrm{H}_{12} /$ kmoles of $\mathrm{C}_{6} \mathrm{H}_{6}$ totally reacted $) \times 100$ $\mathrm{C}_{6} \mathrm{H}_{6}$ totally reacted $=111.11$ kmoles Conversion of $\mathrm{C}_{6} \mathrm{H}_{6}=50 \%$ $50=\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ reacted $/ \mathrm{C}_{6} \mathrm{H}_{6}$ fed $) \times 100$ $\mathrm{C}_{6} \mathrm{H}_{6}$ fed $=\mathbf{2 2 2 . 2 2}$ kmoles Theoretical H_{2} required $=666.67$ kmoles Excess $\mathrm{H}_{2}=30 \%$ $30=\left(\mathrm{H}_{2}\right.$ fed $-\mathrm{H}_{2}$ theoretical/ H_{2} theoretical $) \times 100$ H_{2} fed $=\mathbf{8 6 6 . 6 7}$ kmoles	1 1 1 1 1 1 1
6		Any 2	12
6	a	Basis : $15000 \mathrm{Kg} / \mathrm{hr}$ of weak solution fed to evaporator Let X, Y and Z be the kg / h of water evaporated, thick liquor and NaCl precipitated as crystal Overall Material Balance :	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 14 of 16

		$\begin{equation*} 15000=X+Y \tag{1} \end{equation*}$ Material balance of $\mathbf{N a O H}$ NaOH in feed solution $=\mathrm{NaOH}$ in thick Liquor $\begin{equation*} 0.15 \times 15000=045 \mathrm{Y} \tag{2} \end{equation*}$ Material balance of NaCl Nacl in feed solution $=\mathrm{NaCl}$ in thick liquor +Nacl crystal obtained $\begin{aligned} & 0.10 \times 15000=0.02 \times 5000+Z \\ & Z=1400 \mathrm{~kg} / \mathrm{hr} \end{aligned}$ Put X and Y in equation (1) $\begin{aligned} & X+5000+1400=15000 \\ & X=8600 \mathrm{~kg} / \mathrm{hr} \end{aligned}$ Water evaporated $=\mathbf{8 6 0 0} \mathbf{~ k g} / \mathrm{hr}$ Thick liquor obtained $=5000 \mathrm{~kg} / \mathrm{hr}$ $\mathbf{N a C l}$ precipitated as Crystal $=1400 \mathbf{k g} / \mathrm{hr}$	1 1 1 1 1 1
6	b	Basis : 1000 kmol Benzen- Toluene mixture Let X and Y be the mass flow rates of distillate and bottom product respectively	1

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 15 of 16

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Overall Material Balance:
\[
\begin{equation*}
X+Y=1000 \tag{i}
\end{equation*}
\] \\
Material Balance of benzene:
\[
\begin{gathered}
(52 / 100) * \mathrm{X}+(5 / 100) * \mathrm{Y}=(28 / 100) * 1000 \\
0.52 * \mathrm{X}+0.05 * \mathrm{Y}=280
\end{gathered}
\] \\
By solving \(\quad X=489.36 \mathrm{Kg} / \mathrm{hr}\)
\[
\mathrm{Y}=510.64 \mathrm{~kg} / \mathrm{hr}
\] \\
Mass flow rates of distillate \(=\mathbf{4 8 9 . 3 6 K g} / \mathbf{h r}---\) ans. (a) \\
Mass flow rates of bottom Product \(=\mathbf{5 1 0 . 6 4} \mathbf{~ k g} / \mathbf{h r}\)---- ans.(a) \\
Benzene in distillate \(=0.52 * 489.36=\mathbf{2 5 4 . 4 7} \mathbf{~ K g} / \mathbf{h r}\) \\
Benzene in feed \(=0.28 * 1000=\mathbf{2 8 0} \mathbf{~ K g} / \mathbf{h r}\)
\[
\% \text { recovery of benzene }=\frac{\text { benzene in distillate }}{\text { Benzene in feed }}
\] \\
\% recovery of benzene \(=\mathbf{9 0 . 8 8} \% \quad-------\) ans. \((b)\)
\end{tabular} \& 1 \\
\hline 6 \& c \& \begin{tabular}{l}
SOLUTION : \\
BASIS : 100 kmol of \(\mathrm{SO}_{2}\) and 100 kmoles of \(\mathrm{O}_{2}\) fed
\[
\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3}
\] \\
\(\mathrm{O}_{2}\) supplied \(=100 \mathrm{kmol}\) \\
Conversion of \(\mathrm{SO}_{2}=80 \%\)
\[
\begin{aligned}
\mathrm{SO}_{2} \text { reacted } \& =100 \times 0.80 \\
\& =80 \mathrm{kmol}
\end{aligned}
\]
\end{tabular} \& 1

1

\hline
\end{tabular}

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 16 of 16

