8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous) (ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 1 of 15

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 2 of 15

\begin{tabular}{|c|c|c|c|}
\hline Q \& \[
\begin{gathered}
\hline \text { Sub } \\
\text { q.no. }
\end{gathered}
\] \& Answer \& marks \\
\hline \& 1 \& Any 5 \& 10 \\
\hline 1 \& a \& \begin{tabular}{l}
Sensible Heat: Sensible heat is the heat that must be transferred to raise or lower the temperature of a substance or mixture of substance. \\
Latent Heat:It is the heat required to change the phase of a substance at constant temperature and pressure.
\end{tabular} \& 1
1 \\
\hline 1 \& b \& \begin{tabular}{l}
Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures \\
Mathematical Statement: \(\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\) \\
where P is the total pressure of gas mixture, \(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\) are partial pressures \\
Amagat's law: \\
Amagat's law states that total volume occupied by a gas mixture is equal to the sum of pure component volumes.
\[
\mathrm{V}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}
\] \\
Where V is the total volume of gas mixture \\
\(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}\) are pure component volumes
\end{tabular} \& 1

1

\hline 1 \& c \& | Heat capacity: It is the amount of heat required to increase the temperature of one kg of substance by 1 K . It is expressed on a unit mass or unit mole basis. |
| :--- |
| Unit: $\mathrm{kJ} /(\mathrm{kmol} . \mathrm{K})$ or $\mathrm{kJ} /(\mathrm{kg} . \mathrm{K})$ | \& 1

1

\hline 1 \& d \& $$
\begin{aligned}
& 475 \text { torr } \\
& \begin{aligned}
& \text { Absolute pressure }=\text { Atmospheric pressure }- \text { Vacuum } \\
& \qquad=760-475=285 \text { torr }
\end{aligned} \\
& \qquad=(285 / 760) * 101.325=\mathbf{3 7 . 9 9} \mathbf{~ k P a}
\end{aligned}
$$ \& 1

1

\hline
\end{tabular}

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 3 of 15

\begin{tabular}{|c|c|c|c|}
\hline 1 \& e \& Stoichiometric coefficient
\[
\begin{aligned}
\& \mathrm{HCl}=4 \\
\& \mathrm{O}_{2}=1 \\
\& \mathrm{Cl}_{2}=2 \\
\& \mathrm{H}_{2} \mathrm{O}=2
\end{aligned}
\] \& \(1 / 2\) mark each \\
\hline 1 \& f \& \begin{tabular}{l}
Net Calorific value(NCV): It is the calorific value of the fuel when the water in the combustion products is present in vapour form \\
Gross Calorific value(GCV): It is the calorific value of the fuel when the water in the combustion products is present in liquid form
\end{tabular} \& 1 \\
\hline 1 \& g \& \begin{tabular}{l}
Block diagram for distillation: \\
Overall balance is \(\mathrm{F}=\mathrm{X}+\mathrm{Y}\) \\
Component balance for MVC is \(\mathrm{Fx}_{\mathrm{F}}=\mathrm{Dx}_{\mathrm{D}}+\mathrm{W} \mathrm{x}_{\mathrm{W}}\)
\end{tabular} \& 1

1

\hline 2 \& \& Any 3 \& 12

\hline 2 \& a \& $$
\begin{aligned}
& 1 \mathrm{~m}^{3}=1000 \mathrm{lit} \\
& 1 \mathrm{~h}=3600 \mathrm{sec} \\
& \begin{aligned}
1000 \mathrm{l} / \mathrm{h} & =(1000 * 1000 / 3600) \mathrm{l} / \mathrm{s} \\
& =\mathbf{2 7 7 . 7 8} \mathbf{l} / \mathrm{s}
\end{aligned}
\end{aligned}
$$ \& 1

1
1
1

\hline
\end{tabular}

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 4 of 15

2	b	Basis: 100 kg of groundnut seeds. kg of solid $=45 \mathrm{~kg}$ kg of oil $=45 \mathrm{~kg}$ unchanging component is solid let weight of cake $=x \mathrm{~kg}$ solid balance $0.8 \mathrm{x}=45$ Therefore $x=45 / 0.8=56.25 \mathrm{~kg}$ Oil in cake $=56.25 * 0.05$ $=2.81 \mathrm{~kg}$ Therefore oil recovered $=45-2.81$ $=42.19$ \% recovery of oil $\begin{aligned} & =(42.19 / 45) * 100 \\ & =\mathbf{9 3 . 7 5} \% \end{aligned}$	1
2	c	Basis : 100 kmol product stream Reaction is $2 \mathrm{~A}+\mathrm{B} \rightarrow---\mathrm{C}$	

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 5 of 15

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 7 of 15

		Overall balance is $1000=X+Y$ Balance for solid $\begin{aligned} & 0.50 * 1000=0.8 * \mathrm{Y} \\ & \mathrm{Y}=625 \mathrm{~kg} \\ & \mathrm{X}=375 \end{aligned}$ Water removed $=\mathbf{3 7 5} \mathbf{~ k g}$ $\%$ of original moisture removed $=(375 / 500) * 100=\mathbf{7 5 \%}$	1
3	c	Basis 100 mol of ethylene Reaction I C $\mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ Reaction II C $2_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ From reaction I 1 Kmol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ formed $\equiv 1 \mathrm{Kmol}_{2} \mathrm{H}_{4}$ reacted $\therefore \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ reacted to from $80 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ $\begin{aligned} & =\frac{1}{1} \times 80 \\ & =80 \mathrm{Kmol} \end{aligned}$ From reaction II 2 kmol of CO_{2} formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ reacted to form $10 \mathrm{kmol} \mathrm{CO}_{2}$ $\begin{aligned} & =\frac{1}{2} \times 10 \\ & =5 \mathrm{Kmol} \end{aligned}$ $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ totally reacted $=80+5=85$ $\therefore \%$ conversion of $\mathrm{C}_{2} \mathrm{H}_{4}=\frac{85}{100} \times 100$ $=\mathbf{8 5 \%}$ $\%$ yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}=\frac{80}{85} \times 100$	1 1 1 1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 8 of 15

\begin{tabular}{|c|c|c|c|}
\hline \& \& = 94.12\% \& \\
\hline 3 \& d \& Basis : 1 kmol ammonia
\[
\begin{aligned}
\mathrm{Q} \& =\mathrm{n}\left[\mathrm{Cp}_{\mathrm{m} 2}(422-298)-\mathrm{Cp}_{\mathrm{m} 1}(311-298)\right] \\
\& =1[37.7(422-298)-35.86(311-298)] \\
\& =\mathbf{4 2 0 8 . 6 2} \mathbf{K J}
\end{aligned}
\] \& 1
1
2 \\
\hline 4 \& \& Any 3 \& 12 \\
\hline 4 \& a \& \begin{tabular}{l}
Basis: Average molecular weight of gas mixture \(=22.4\) \\
Let \(\mathrm{X}_{\mathrm{A}} \& \mathrm{X}_{\mathrm{B}}\) be the mole fractions of \(\mathrm{CH}_{4} \& \mathrm{C}_{2} \mathrm{H}_{6}\) respectively
\[
\begin{align*}
\& \mathrm{M}_{\mathrm{av}}=\mathrm{M}_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \\
\& 22.4=16 \mathrm{X}_{\mathrm{A}}+30 \mathrm{X}_{\mathrm{B}} . \tag{1}\\
\& 1=\mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \ldots \ldots \ldots . \tag{2}
\end{align*}
\] \\
Solving (1) \& (2) we get
\[
X_{A}=0.543 \text { and } X_{B}=0.457
\] \\
Mole fraction of \(\mathrm{CH}_{\mathbf{4}}=\mathbf{0} .543 \&\) Mole fraction of \(\mathrm{C}_{2} \mathbf{H}_{\mathbf{4}}=\mathbf{0 . 4 5 7}\)
\end{tabular} \& 1
1
2 \\
\hline 4 \& b \& \begin{tabular}{l}
Basis : 100 kg . mixed acid. \\
Weight of \(\mathrm{HNO}_{3}\) in mixed acid \(=40 \mathrm{~kg}\). \\
Weight of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) in mixed acid \(=43 \mathrm{~kg}\). \\
Let weight of con. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) be X kg and weight of con. \(\mathrm{HNO}_{3}\) be Y kg \\
Balance for \(\mathrm{H}_{2} \mathrm{SO}_{4}\)
\[
0.98 \mathrm{X}=43 \text { or } \mathrm{X}=43.88 \mathrm{~kg} .
\] \\
Overall balance is \(\mathrm{X}+\mathrm{Y}=100\) \\
Or \(Y=100-43.88=56.13 \mathrm{~kg}\) \\
Let N be the strength of nitric acid \\
Balance for \(\mathrm{HNO}_{3}\)
\end{tabular} \& 1

1

\hline
\end{tabular}

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 9 of 15

		(N/ 100) $56.13=40$ or $\mathbf{N}=\mathbf{7 1 . 2 6}$ Weight ratio of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to HNO_{3} fed=43.88/56.12=0.7819	1 1
4	c	Basis: 50 kmoles /hr butane $\mathrm{C}_{4} \mathrm{H}_{10}+6.5 \mathrm{O}_{2}-\cdots--\rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ 100 kmol air fed $=21 \mathrm{kmol} \mathrm{O}_{2}$ fed 2100 kmol air fed $=$? O_{2} fed $=2100 * 21 / 100=441 \mathrm{kmoles}$ $1 \mathrm{kmol} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{10}$ fed $=6.5 \mathrm{kmol} \mathrm{O}_{2}$ theoretically required $50 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{10}$ fed $=$? O_{2} theoretically required $=325 \mathrm{kmol}$ $\%$ excess $=\left(\mathrm{O}_{2}\right.$ fed $-\mathrm{O}_{2}$ theoretical $) * 100 / \mathrm{O}_{2}$ theoretical $\begin{aligned} & =(441-325) * 100 / 325 \\ & =\mathbf{3 5 . 6 9 \%} \end{aligned}$	1
4	d	Basis: 100 kmol of flue gas. It contains $13.4 \mathrm{kmol} \mathrm{CO}_{2}, 80.5 \mathrm{kmol}_{2}$ and $6.1 \mathrm{kmol} \mathrm{O}_{2}$ N_{2} in supplied air $=\mathrm{N}_{2}$ in flue gas $=80.5 \mathrm{kmol}$ Air contains $79 \% \mathrm{~N}_{2}$ by volume. Amount of air supplied $=80.5 / 0.79=101.9 \mathrm{kmol}$ Amount of O_{2} in supplied air $=0.21 \mathrm{X} 101.9=21.4 \mathrm{kmol}$ Amount of O_{2} in flue gas $=6.1 \mathrm{kmol}$ Amount of O_{2} consumed in combustion of fuel $\begin{aligned} & \quad=21.4-6.1=15.3 \mathrm{kmol} \\ & \text { \% excess air }=\% \text { excess } \mathrm{O}_{2} \\ & \text { \% excess air supplied }=(21.4-15.3) / 15.3 \quad \text { X } 100 \\ & =\mathbf{3 9 . 9} \% \text {------ Ans. } \end{aligned}$	1 1 1 1 1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 10 of 15

4	e	$\begin{aligned} & \text { Force }=19.65 \mathrm{kgf} \\ & \text { Diameter of piston }(\mathrm{d})=5 \mathrm{~cm} \\ & \begin{aligned} \text { Area } & =\pi \mathrm{d}^{2} / 4 \\ & =\pi 5^{2} / 4=19.625 \mathrm{~cm}^{2} \end{aligned} \\ & \begin{aligned} \text { Pressure } & =\text { F/area } \\ & =19.65 / 19.625=1.0013 \mathrm{kgf} / \mathrm{cm}^{2} \\ & =1.0013^{*} 9.808^{*} 10^{4} / 1000=\mathbf{9 8 . 0 8} \mathbf{~ k P a} \end{aligned} \end{aligned}$	1 1 1 1
5		Any 2	12
5	a	Basis : 100 kmol of mixture (Volume \% = Mole \%) It Contain $\mathrm{N}_{2}=70.5 \mathrm{kmol}, \mathrm{O}_{2}=18.8 \mathrm{kmol}, \mathrm{H}_{2} \mathrm{O}=1.2 \mathrm{kmol}$, $\mathrm{NH}_{3}=9.5 \mathrm{kmol}$ Mole fraction of $\mathrm{N}_{2}=70.5 / 100=0.705$ Mole fraction of $\mathrm{O}_{2}=18.8 / 100=0.188$ Mole fraction of $\mathrm{H}_{2} \mathrm{O}=1.2 / 100=0.012$ Mole fraction of $\mathrm{NH}_{3}=9.5 / 100=0.095$ $\mathrm{M}_{\mathrm{N} 2}=28, \mathrm{M}_{\mathrm{O} 2}=32, \mathrm{M}_{\mathrm{H} 2 \mathrm{O}}=18, \mathrm{M}_{\mathrm{NH} 3}=17$ $\mathrm{Mavg}=\Sigma \mathrm{Mi} . \mathrm{Xi} \quad$ where $\mathrm{i}=1$ to n $\mathrm{Mavg}=[28 \times 0.705+32 \times 0.188+18 \times 0.012+17 \times 0.095]$ M avg $=\mathbf{2 7 . 5 8 7}$ Density of gas mixture $\rho=(\mathrm{P} \times \mathrm{Mavg}) /(\mathrm{R} \times \mathrm{T})$ $\begin{gathered} \text { Where } \mathrm{P}=810.325 \mathrm{Kpa} \text { and } \mathrm{T}=923 \mathrm{~K} \\ \mathrm{R}=8.3145 \quad \mathrm{~m}^{3} \mathrm{kpa} / \mathrm{Kmol} \mathrm{~K} \\ \rho=(810.325 \times 27.587) /(8.3145 \times 923) \end{gathered}$	1 1 1 1 1 1 1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 11 of 15

		$\rho=2.914 \mathrm{Kg} / \mathrm{m}^{3}$	1
5	b	Basis : 100 kmol of gas mixture Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ be mol fraction of $\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}$ respectively. Mavg. using correct molecular wt. of $\mathrm{N}_{2}=28$ By engineer 1 is $\begin{equation*} 30.08=28 X_{1}+44 X_{2}+32 X_{3} \tag{1} \end{equation*}$ Mavg. Using in correct molecular wt. of $\mathrm{N}_{2}=14$ By engineer 2 is $\begin{equation*} 18.74=14 X_{1}+44 X_{2}+32 X_{3} \tag{2} \end{equation*}$ Sum of mol fraction $=1$ $\begin{equation*} 1=X_{1}+X_{2}+X_{3} \tag{3} \end{equation*}$ Solving (1) , (2) and (3) $\begin{aligned} & \mathrm{X}_{1}=0.81 \\ & \mathrm{X}_{2}=0.11 \\ & \mathrm{X}_{3}=0.08 \end{aligned}$ Volume \% of $\mathbf{N}_{\mathbf{2}}=\mathbf{8 1 \%}$ Volume \% of $\mathrm{CO}_{2}=\mathbf{1 1 \%}$ Volume \% of $\mathrm{O}_{\mathbf{2}}=\mathbf{8 \%}$	1 1 1 1 2 1
5	c	Basis : 100 kmol feed gas mixture containing A and inters entering per unit times Solvent to gas entering ratio $=2: 1$ Solvent fed to the tower $=(2 / 1) \times 100=200 \mathrm{kmol} /$ time A in feed gas $=0.15(100)=15 \mathrm{kmol} /$ time Inters in feed gas $=0.85(100)=85 \mathrm{kmol} /$ time Material balance of Inerts	1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 12 of 15

		Inerts in outlet gas $=$ Inerts in feed gas $=85 \mathrm{kmol} /$ time Let X be the gas leaving the tower per unit time Mole $\%$ inerts in gas leaving $=100-(2.5+1.5)=96$ $(85 / X) \times 100=96$ Solving, we get $\mathrm{X}=88.54 \mathrm{kmol} /$ time Solute ' A ' in gas leaving the tower $=0.025 \times 88.54=2.21 \mathrm{kmol} /$ time Solute ' A ' absorbed $=15-2.21=12.79 \mathrm{kmol} /$ time $\%$ recovery of ' A ' $=(12.79 / 15) \times 100=85.27 \% \quad----$ ans (\mathbf{a}) Solvent (B) in gas leaving the tower $=0.015(88.54)=1.33 \mathrm{kmol} /$ time [Fraction of solvent fed to and lost in the gas leaving the tower] = $1.33 / 200=0.00665$ ans (b)	11
6		Any 2	12
6	a	$\begin{aligned} & \hline \text { Basis: } 100 \mathrm{kmol} \text { of } \mathrm{HCl} \\ & \qquad 4 \mathrm{HCl}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & 30 \% \text { excess air required } \\ & 80 \% \text { Conversion } \\ & \therefore . \mathrm{HCl} \text { reacted }=0.80 \times 100=80 \mathrm{kmol} \\ & \mathrm{HCl} \text { unreacted }=20 \mathrm{kmol} \\ & 4 \mathrm{kmol} \text { of } \mathrm{HCl} \quad \equiv 2 \mathrm{kmol} \text { of } \mathrm{Cl}_{2} \text { produced } \\ & \therefore . \mathrm{Cl}_{2} \text { produced from } \mathrm{HCl}=2 / 4 \times 80=40 \mathrm{kmol} \\ & \quad 4 \mathrm{kmol} \text { of } \mathrm{HCl} \equiv 1 \mathrm{kmol} \text { of } \mathrm{O}_{2} \\ & \quad \therefore \mathrm{O}_{2} \text { reacted }=1 / 4 \times 80=20 \mathrm{kmol} \end{aligned}$ But O_{2} is calculated based on reactant feed. $\therefore \mathrm{O}_{2}$ Therotical requirement $=1 / 4 \times 100=25 \mathrm{kmol}$	11

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry Subject code 22315 Page 13 of 15

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code 22315
Page 14 of 15

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Industrial Stoichiometry
Subject code
22315
Page 15 of 15

			1
6	c	Basis : 1 mol of Phenol crystals	
		1. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}=-393.51 \mathrm{KJ} / \mathrm{mol}$	
		$\text { 2. } \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})----->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{1}=-285.83 \mathrm{KJ} / \mathrm{mol}$	2
		3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{c})+7.5 \mathrm{O}_{2}(\mathrm{~g})----->6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	
		$\Delta \mathrm{H}^{0} \mathrm{c}=-3053.25 \mathrm{KJ} / \mathrm{mol}$	
		$\text { 4. } 6 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{O}_{2}(\mathrm{~g})-\cdots--->\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{c})$	
		$\Delta \mathrm{H}^{0} \mathrm{f}=?$	
		$\text { Reaction(4) }=6 \times \text { Reaction }(1)+3 x \text { Reaction (2) }- \text { Reaction (3) }$	2
		$\Delta \mathrm{H}^{0} \mathrm{f}=6 \mathrm{x} \Delta \mathrm{H}_{1}+3 \mathrm{x} \Delta \mathrm{H}_{2}-\Delta \mathrm{H}^{0} \mathrm{c}$	
		$=\mathbf{6 x}(-393.51)+3 \times(-285.83)-(-3053.25)$	
		$=(-2361.06)+(-857.49)-(-3053.25)$	
		$=-165.3 \mathrm{KJ} / \mathrm{mol}$	
		$\Delta H^{0} \mathrm{f}=-165.3 \mathrm{KJ} / \mathrm{mol}$------ ans.	2

