

SUMMER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry

Subject code 22315

Page **1** of **15**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry

Subject code 22315

Page **2** of **15**

Q	Sub	Answer	marks
no	q.no.		
	1	Any 5	10
1	a	Sensible Heat: Sensible heat is the heat that must be transferred to raise or	1
		lower the temperature of a substance or mixture of substance.	
		Latent Heat: It is the heat required to change the phase of a substance at	1
		constant temperature and pressure.	
1	b	Dalton's law: It states that the total pressure exerted by a gas mixture is	1
		equal to the sum of partial pressures	
		Mathematical Statement :P =P ₁ +P ₂ +P ₃	
		where P is the total pressure of gas mixture , P_1 , P_2 , P_3 are partial pressures	
		Amagat's law:	
		Amagat's law states that total volume occupied by a gas mixture is equal to	1
		the sum of pure component volumes.	
		$V = V_A + V_B + V_C$	
		Where V is the total volume of gas mixture	
		$V_{A,}V_{B},V_{C}$ are pure component volumes	
1	c	Heat capacity: It is the amount of heat required to increase the temperature	1
		of one kg of substance by 1 K. It is expressed on a unit mass or unit mole	
		basis.	
		Unit: kJ/(kmol.K) or kJ/(kg.K)	1
1	d	475 torr	
		Absolute pressure = Atmospheric pressure – Vacuum	
		= 760 - 475 = 285 torr	1
		= (285/760) * 101.325 = 37.99 kPa	1

Subject Title: Indus	trial Stoichiometry Subject code 22315	Page 3 of 15	
1 e	Stoichiometric coefficient	¹∕₂ mark	
	HCl = 4	each	
	$O_2 = 1$		
	$Cl_2 = 2$		
	$H_2O = 2$		
1 f	Net Calorific value (NCV): It is the calorific value of the fuel when the		
	water in the combustion products is present in vapour form	1	
	Gross Calorific value(GCV): It is the calorific value of the fuel when the		
	water in the combustion products is present in liquid form	1	
1 g	Block diagram for distillation:		
	Feed F kg/h distillation x_F distillation x_F residue Y kg/h x_W Overall balance is F = X+ Y Component balance for MVC is Fx _F = Dx _D +Wx _W	1	
2	Any 3	12	
2 a	$1 \text{ m}^3 = 1000 \text{ lit}$	1	
	1h = 3600 sec	1	
	1000 l/h = (1000 * 1000 / 3600) l/s	1	
	= 277.78 l/s	1	

SUMMER-19 EXAMINATION Model Answer

t Title:	Indus	trial Stoichiometry	Subject code	22315	Page 4 of
2	b	Basis: 100 kg of groundnut seeds.	> oil		1
		kg of solid=45kg kg of oil=45kg unchanging component is solid let weight of cake=x kg solid balance 0.8x=45			1
		Therefore x=45/0.8=56.25kg Oil in cake=56.25*0.05 =2.81kg Therefore oil recovered=45-2.81 =42.19			1
		% recovery of oil =(42.19/45)*100 = 93.75 %			1
2	с	Basis : 100 kmol product stream Reaction is 2A + B→ C			

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title:	Subject Title: Industrial Stoichiometry Subject code 22315					
	Kmol of inerts in product stream = 19.23 kmol					
	Kmol of A in produc					
	1					
	Kmol of C in produc					
	Kmol of A reacted (from reaction) $2 * 46.15 = 92.3$					
	Kmol of A fed = Kmol of A reacted + Kmol of A unreacted					
	= 92.3	8 + 23.08 = 115.38 kmo	l	1		
	Kmol of B reacted (#	from reaction $) = 46.15$				
	Kmol of B fed = Km	ol of B reacted + Kmol	of B unreacted			
	= 46.1	5 + 11.54 = 57.69 kmc	l	1		
	Inerts = 19.23 kmol					
	Component	Kmol	Mole %			
	A	115.38	60	1		
	В	57.69	30			
	Inerts	19.23	10			
		I				
2			t states that the enthalpy			
	Ũ	-	ticular reaction is the same	2		
		takes place in one or se	-			
	For Example : Carbo					
	Path 1 : C (s) $+ O_2$ (- Δ H	2			
	(i) + (ii) C (s) + C	$O_2(g)> CO_2(g)$				
	Thus $\Delta H = \Delta H1$	+ Δ H2				

Title:	Indust	rial Stoichiometry Subject code 2231	.5 Page 6
3		Any 3	12
3	a	Basis : 100 kg. of coal.	
		$\xrightarrow{100 \text{kg coal}} \text{Burner}$	
		Refuse Y kg.	
		7% C, 93% ash	
		Individual balance for ash.	
		24 = 0.93 Y	
		Y = 25.80 kg.	1
		Balance for carbon	
		63 = X + 0.07 * 25.80	
		X = 61.194 kg.	1
		Unburnt carbon = $0.07 * 25.8 = 1.806$ kg.	1
		% of original carbon unburnt =(1.806/63) * 100	1
		= 2.867%	1
3	b	Basis: 1000 kg wet solid	
		Water Xkg 1000 Kg feed 50% solid dryer	1
		Product Y kg	
		20% moisture	

Subject Title	: Indust	rial Stoichiometry	Subject code	22315	Page 7	' of 15
		Overall balance is				
		1000 = X + Y			1	
		Balance for solid				
		0.50 * 1000 = 0.8 * Y				
		Y = 625 kg			1	
		X = 375				
		Water removed = 375 kg				
		% of original moisture removed = $(375/500)$ * 10	0 = 75%		1	
3	c	Basis 100 mol of ethylene				
		Reaction I C ₂ H ₄ + $\frac{1}{2}$ O ₂ \longrightarrow C ₂ H ₄ O				
		Reaction II $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2CO_2 + 2H_2CO$	С			
		From reaction I			1	
		1Kmol of C_2H_4O formed= 1Kmol C_2H_4 reacted				
		\therefore C ₂ H ₄ O reacted to from 80 kmol C ₂ H ₄ O				
		$=\frac{1}{1} \times 80$				
		= 80Kmol				
		From reaction II				
		2kmol of CO ₂ formed≡ 1Kmol C ₂ H ₄ reacted				
		\therefore C ₂ H ₄ reacted to form 10 kmol CO ₂				
		$=\frac{1}{2} \times 10$				
		= 5Kmol			1	
		\therefore C ₂ H ₄ totally reacted = 80 + 5= 85				
		\therefore % conversion of C ₂ H ₄ = $\frac{85}{100} \times 100$			1	
		= 85%			1	
		% yield of $C_2H_4O = \frac{80}{85} \times 100$			1	

Subject 7	Fitle	: Indus	strial Stoichiometry Subject code 22315	Page 8 of 15
[= 94.12%	
-	3	d	Basis : 1 kmol ammonia	
	Q = n[$Cp_{m2} (422 - 298) - Cp_{m1} (311 - 298)]$ = 1 [37.7 (422 - 298) - 35.86 (311 - 298)] = 4208.62 KJ 4 Any 3 4 a Basis: Average molecular weight of gas mixture=22.4			
-				
-				
			Let X_A & X_B be the mole fractions of CH_4 & C_2H_6 respectively	
			$M_{av} = M_A X_A + M_B X_B$	1
	$22.4 = 16X_{A} + 30X_{B} \dots (1)$			
	$1 = X_A + X_B \dots (2)$			
	Solving (1) &(2) we get $X_A = 0.543$ and $X_B = 0.457$			
			2	
			Mole fraction of CH ₄ =0.543& Mole fraction of C ₂ H ₄ =0.457	
	4	b	$\begin{array}{ccc} \text{con.H}_2\text{SO}_4 & \longrightarrow & \\ & & & & \\ \text{con.HNO}_3 & & & & \\ \end{array} & & & \\ \end{array}$	
			Basis : 100 kg. mixed acid.	
			Weight of HNO_3 in mixed acid = 40 kg.	1
			Weight of H_2SO_4 in mixed acid = 43 kg.	
			Let weight of $con.H_2SO_4$ be X kg and weight of $con.HNO_3$ be Y kg	
			Balance for H ₂ SO ₄	
			0.98X = 43 or X = 43.88 kg.	
			Overall balance is $X+Y = 100$	1
			Or Y = $100 - 43.88 = 56.13$ kg	
			Let N be the strength of nitric acid	
			Balance for HNO ₃	

Image: Normal system of the system of th
Weight ratio of H_2SO_4 to HNO_3 fed=43.88/56.12=0.7819 1 4 c Basis: 50 kmoles /hr butane $C_4H_{10} + 6.5 O_2 \rightarrow 4CO_2 + 5 H_2O$ 1 100 kmol air fed = 21 kmol O_2 fed 1 2100 kmol air fed = ? 02 fed = 2100*21/100= 441 kmoles
4 c Basis: 50 kmoles /hr butane 4 c Basis: 50 kmoles /hr butane $C_4H_{10} + 6.5 O_2 \rightarrow 4CO_2 + 5 H_2O$ 1 100 kmol air fed = 21 kmol O_2 fed 1 2100 kmol air fed = ? 02 fed = 2100*21/100= 441kmoles 1 1
$C_4H_{10} + 6.5 O_2 \rightarrow 4CO_2 + 5 H_2O$ 1 100 kmol air fed = 21 kmol O_2 fed 1 2100 kmol air fed = ? 02 fed = 2100*21/100= 441kmoles 1 1
$\begin{array}{c} 2100 \text{ kmol air fed} = ?\\ O_2 \text{ fed} = 2100*21/100= 441 \text{ kmoles} \end{array} $
$O_2 \text{ fed} = 2100*21/100= 441 \text{kmoles}$ 1
1 kmol C_4H_{10} fed = 6.5 kmol O_2 theoretically required
$50 \text{ kmol } C_4 H_{10} \text{ fed} = ?$
O_2 theoretically required = 325 kmol 1
% excess= $(O_2 \text{ fed-}O_2 \text{ theoretical})*100/O_2$ theoretical
= (441-325)*100/325
= 35.69%
4 d Basis: 100 kmol of flue gas.
It contains 13.4 kmol CO ₂ ,80.5 kmol N ₂ and 6.1 kmol O ₂ 1
N_2 in supplied air = N_2 in flue gas = 80.5 kmol
Air contains 79% N_2 by volume.
Amount of air supplied = $80.5/0.79 = 101.9$ kmol 1
Amount of O_2 in supplied air = 0.21X101.9=21.4 kmol
Amount of O_2 in flue gas = 6.1 kmol
Amount of O ₂ consumed in combustion of fuel 1
= 21.4 - 6.1 = 15.3 kmol
% excess air = % excess O_2
% excess air supplied = $(21.4 - 15.3)/15.3 \times 100$ 1
= 39.9 % Ans.

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject Title: Industrial StoichiometrySubject code22315Pa	Page 10 of 15	
4 e Force = 19.65 kgf		
Diameter of piston (d)= 5 cm		
Area = $\pi d^2/4$	1	
$=\pi 5^2/4 = 19.625 \mathrm{cm}^2$		
Pressure = F/area	1	
$= 19.65/19.625 = 1.0013 \text{ kgf/cm}^2$	1	
$= 1.0013^* \ 9.808^* 10^4 / 1000 = 98.08 \ kPa$	1	
5 Any 2	12	
5 a Basis : 100 kmol of mixture (Volume % = Mole %)		
It Contain $N_2 = 70.5 \text{ kmol}, O_2 = 18.8 \text{ kmol}$, $H_2O = 1.2 \text{ kmol}$,		
$NH_3 = 9.5 \text{ kmol}$		
Mole fraction of $N_2 = 70.5/100 = 0.705$		
Mole fraction of $O_2 = 18.8/100 = 0.188$	1	
Mole fraction of $H_2O = 1.2/100 = 0.012$		
Mole fraction of $NH_3 = 9.5 / 100 = 0.095$		
$M_{N2}=28$, $M_{O2}=32$, $M_{H2O}=18$, $M_{NH3}=17$	1	
M avg = Σ Mi.Xi where i =1 to n	1	
M avg = $[28 \times 0.705 + 32 \times 0.188 + 18 \times 0.012 + 17 \times 0.095]$		
M avg = 27.587	1	
Density of gas mixture $\rho = (P \times Mavg)/(R \times T)$		
Where $P = 810.325$ Kpa and $T = 923$ K	1	
R = 8.3145 m ³ kpa / Kmol K		
$\rho = (810.325 \text{ x } 27.587) / (8.3145 \text{ x } 923)$		

Subject	Subject Title: Industrial Stoichiometry Subj		Subject code	22315	Page 1 2	1 of 15	
			$\rho = 2.914 \text{ Kg} / \text{m}^3$			1	
	5	b	Basis : 100 kmol of gas mixture				
			Let X_1 , X_2 , X_3 be mol fraction of N_2 , CO_2 , O_2 re	espectively.			
			Mavg. using correct molecular wt. of $N_2 = 28$				
			By engineer 1 is				
			$30.08 = 28 X_1 + 44X_2 + 32X_3 \dots \dots \dots \dots (1)$			1	
			Mavg. Using in correct molecular wt. of $N_2 = 14$				
			By engineer 2 is				
			$18.74 = 14 X_1 + 44X_2 + 32X_3 \dots (2)$			1	
			Sum of mol fraction = 1				
			$1 = X_1 + X_2 + X_3 \dots (3)$			1	
			Solving (1), (2) and (3)				
			$X_1 = 0.81$			2	
			$X_2 = 0.11$				
			$X_{3} = 0.08$				
			Volume % of $N_2 = 81\%$			1	
			Volume % of $CO_2 = 11\%$				
			Volume % of O ₂ = 8%				
	5	с	Basis : 100 kmol feed gas mixture containing A a	and inters enteri	ing per unit		
			times				
			Solvent to gas entering ratio $= 2:1$				
			Solvent fed to the tower = $(2/1) \times 100 = 200 \text{ km}$	ol / time			
			A in feed gas = $0.15 (100) = 15 \text{ kmol} / \text{time}$			1	
			Inters in feed gas = $0.85 (100) = 85 \text{ kmol} / \text{time}$				
			Material balance of Inerts				

SUMMER-19 EXAMINATION Model Answer

Subject Title: In	ndustrial Stoichiometry	Subject code 22315	Page 12 of 15		
	Inerts in outlet gas = Inerts in feed gas = 85 k	mol/ time	1		
	Let X be the gas leaving the tower per unit time	e			
	Mole % inerts in gas leaving $= 100 - (2.5 + 1.5) = 96$				
	$(85/X) \ge 100 = 96$				
	Solving , we get $X = 88.54$ kmol/time				
	Solute 'A' in gas leaving the tower = $0.025 \times 88.54 = 2.21$ kmol/time				
	Solute 'A' absorbed = $15 - 2.21 = 12.79 \text{ kmol/t}$	ime	1		
	% recovery of 'A' = (12.79/ 15) x 100 = 85.27	% ans (a)	1		
	Solvent (B) in gas leaving the tower = $0.015(88)$.	.54) = 1.33 kmol/time			
	[Fraction of solvent fed to and lost in the gas	leaving the tower] =	1		
	1.33 / 200 = 0.00665 ans (b)				
6	Any 2		12		
6 a	6 a Basis : 100 kmol of HCl				
	$4 \text{ HCl} + \text{O}_2 \longrightarrow 2 \text{ Cl}$	$H_2 + H_2O$	1		
	30 % excess air required				
	80 % Conversion				
	. • . HCl reacted = $0.80 \times 100 = 80 \text{ kmol}$				
	HCl unreacted = 20 kmol		1		
	4 kmol of HCl \equiv 2 kmol of Cl ₂ produced				
	. \cdot . Cl ₂ produced from HCl = 2/4 x 80 = 40 km	ıol			
	4 kmol of HCl \equiv 1 kmol of O ₂				
	. O_2 reacted = 1/4 x 80 = 20 kmol				
	But O ₂ is calculated based on reactant feed.				
	. O_2 Therotical requirement = 1/4 x 100 = 25	kmol	1		

SUMMER-19 EXAMINATION Model Answer

ıbject Title: Indu	strial Stoichiometry		Subject code 22315	Page 13 of 15		
	As 30 % excess air is provid	ded.				
	O ₂ in supplied air = 25 x ($1 + \frac{30}{100}$) = 32.5 kmol					
	= 2.5 - 20 = 12.5 kmol O ₂ unreacted = O ₂ in air - O ₂ reacted					
	= 32.5 - 20 = 12.5 kmol					
	N ₂ in sup	plied air = $79 / 21 \text{ x} 3$	32.5 = 122.26 kmol			
	4 HCl reacted \equiv 2 kmol of H20					
	H2O produced = $2/4 \ge 80 = 40 \mod 10^{-3}$. Composition of flue gas					
	Vcl Component	Kmol	Mol %			
	HCl	20	8.51			
	Cl ₂	40	17.04	1		
	O ₂	12.5	5.33			
	N ₂	122.26	52.08			
	H ₂	40	17.04			
		234.76	100			
6 b	Basis : 100 Kmol of feed Feed contains 60 kmol A , 3 Let X be the kmol of A reac		nol inerts	1		
		ice by reaction .		Ĩ		

Subject Title: Industrial Stoichiometry Subject code 22315	22315 Page 14 of 15	
2A + B C		
From reaction $2 \text{ kmol } A = 1 \text{ kmol } B = 1 \text{ kmol } C$		
B reacted = $(1/2)^* X = 0.5 X$ kmol		
C formed = $(1/2)^* X = 0.5 X$ kmol		
Material Balance of A give	1	
A unreacted = $(60 - X)$ kmol		
Material Balance of Inerts :		
Inerts in feed $=$ Inert in product $= 10$ kmol		
C formed = $(1/2)^* X = 0.5 X$ kmol		
B unreacted = $(30 - 0.5 \text{ X})$ kmol	1	
Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$		
= 100 - X Kmol		
Mole % of A in product stream $= 2\%$		
Kmol A in product stream		
Mole % of A = * 100	1	
Total kmol of product stream		
60 - X		
2 = * 100		
100 – X		
X = 59.184 kmol = amount of A reacted		
Kmol A reacted	1	
Conversion of A = * 100		
Total kmol of A feed		

Subject Title: Industrial Stoichiometry Subject code 22315		Page 15 of :	15	
		59.184		
		Conversion of A = * 100 = 98.64 % Ans	1	
		60		
6	c	Basis : 1 mol of Phenol crystals		
0				
		1. $C(s) + O_2(g)> CO_2(g)$ $\Delta H_1 = -393.51 \text{ KJ/mol}$		
		2. H ₂ (g) +1/2 O ₂ (g)> H ₂ O(l) Δ H ₁ = - 285.83 KJ/mol	2	
		$3.C_6 H_5 OH(c) + 7.5 O_2(g)> 6CO_2(g) + 3 H_2 O(l)$		
		$\Delta H^0 c = -3053.25 \text{ KJ/mol}$		
		4. $6C(s) + 3 H_2(g) + 0.5 O_2(g)> C_6 H_5OH(c)$		
		$\Delta H^0 f = ?$ $\Delta H^0 f = Standard heat of formation of phenol crystal$		
		Reaction(4) = 6 x Reaction (1) + 3x Reaction (2) – Reaction (3)	2	
		$\Delta H^0 f = 6 x \Delta H_1 + 3 x \Delta H_2 - \Delta H^0 c$		
		= 6 x (-393.51) +3 x (-285.83) – (-3053.25)		
		= (-2361.06) + (-857.49) - (-3053.25)		
		= -165.3 KJ/mol		
		$\Delta H^0 f = -165.3 \text{ KJ/mol} \text{ ans.}$	2	