

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

<u>MODEL ANSWER</u>

SUMMER- 19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

22307

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marki
INO	Q. N.		ng Schem
•			P
01		Attempt any FIVE of the following	10
•1	a)	State the need of advanced material in making of automobile components.	02
		Answer: The general finding highlights the need for developing material systems methodology and for approaching research issues in terms of material life cycles. Improved materials and material processing can and must play a large role in generating productive and effective responses to the forces that will drive the automotive industry in future. For example : Aluminum alloys can be used to reduce vehicle weight, thereby reducing emissions and improving fuel economy, but the added materials costs currently offset these advantages for many applications. Material life cycle: Modeling of material system. Materials system research, Lightweight material for body structure.	02
	b)	Define phase and phase diagram	02
		Phase : A phase is defined as a homogeneous part of a system that has uniform	01
		physical and chemical properties. Pure metal is considered to be a phase.	
		Phase diagrams are the diagrams which indicate the phase existing in the system at	
		any temperature and composition. Y- axis of phase diagram indicates temperature	
		and X-axis indicates weight percent of second element as abscissa. These diagrams	01
		are used to find out the amount of phases existing in a given alloy with their	

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code: 2

	composition at any temperature. It also helps in understanding the phenomenon that	
	occur during rapid heating and cooling of the alloy.	
c)	State any two advantages and disadvantages of foundry process	02
	Ans:	01
	Following are the advantages of foundry process: (Any Two – 1 mark each)	
	i. It one of the most versatile manufacturing process.	
	ii. Castings provide uniform directional properties.	
	iii. Intricate shaped parts can be produced.	
	iv. Very complicated parts can be cast in one piece.	
	Following are the disadvantages of foundry process: (Any Two – 1 mark each)	
	i. It is only economical for mass production.	
	ii. Sand casting process cannot produce parts in accurate sizes.	01
	iii. Special casting processes are expensive.	
	iv. In some casting process, skilled operators are required.	
	v. Internal defects are not identified easily.	
d)	Define cutting speed and feed in metal cutting process.	02
	Cutting Speed:	01
	Cutting speed is defined as the speed at which the work moves with respect to the	
	tool (usually measured in feet per minute).	
	Feed : Feed is defined as the distance the tool travels during one revolution of the	01
	part.	
e)	State any four properties of cutting fluid.	02
	Properties of cutting fluid: (Any 04- 1/2 mark each)	
	1. High heat absorption	
	2. Good lubricating qualities to produce low coefficient of friction	
	3. Low viscosity to permit free flow of liquid	02
	4. Non-corrosive to the work or the machine	
	5. High flash point so as the eliminate the hazards of fire	
	6. Odorless ,so as not to produce any bad smell	
	7. Harmless to the skin of operator	
	8. Transparency so that the cutting action of the tool may be observed	
f)	Define machine tool.	02
	A machine tool is a power driven machine form making articles of a given shape,	
	size and accuracy(according to blueprints) by removing metal from workpieces in	
	the form of chips.	
	Most machine tools perform the following functions:	02
	1. Hold the job	
	2. Hold the cutting tool	
	3. Move one or both of these(1 and 2)	
	4. Provide a feeding motion to one of these.	
g)	List any four drilling machine used in industrial sector.	02
	Classification of drilling machine: (Any four -2 marks)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

	Engineering Materials	
	Metals Plastics Ceramics and others Composites	
	Ferrous Nonferrous Thermoplastics Thermosets Elastomers Oxides Reinforced plastics Acrylics Epoxies Rubbers Nitrides Metal-matrix Amorphous ABS Phenolics Silicones Glasses Laminates Nylons Polyethylenes Polyethylenes Others Glasses Others Steels Aluminum Others Others Diamond Others	
b)	State any four objectives of heat treatment.	04
	 Following are the objectives of Heat Treatment: (<i>Any four - 1 Mark each</i>) 1. To improve machinability 2. To improve mechanical properties e.g. tensile strength, ductility, hardness, shock resistance, resistance to corrosion etc. 3. To relieve internal stresses induced during hot or cold working. 	04
	 To change of refine grain size. To improve magnetic and electrical properties. To improve heat resistance, wear resistance. To improve weldability. Remove gases, Harden and strengthen the metal. Homogenize the structure. Change the chemical composition of metal components 	
c)	Describe the steps in sand casting process.	04
	 (Correct Answer = 04 Marks) Following steps are used in the casting process; Pattern Making: Patterns are the replica of casting. Patterns are manufactured using wood, metals, wax, plaster of Paris etc. For preparation of patterns various tools and equipments are used. Moulding and Core making: Prepare a mould cavity by using patterns and use the core for making hollow parts in casting. Melting and Casting: Melt the metal in the furnace and pour it in the mould cavity. Wait until it solidifies. As the casting get solidify, remove the casted part from the sand. Cleaning of Casting: After removing the casting from the sand cut the runners and risers, also trim the flash appears at parting line of mould. Testing of Casting: Test the casting for various defects. 	04
d)	Explain the lathe specification or size of lathe.	04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

	industry	
	2. Biomechanical applications, such as implants and prosthesis	
	3. Marine applications	
	4. Chemical industry	
	5. Gas turbines Powder	
b)	State the effects of alloying elements on properties of steel.	04
	Effects of Alloying Element on steel: (Any 04 - 01 Mark each)	
	1) Nickel:	
	i) It improves Toughness	
	ii) It improves Tensile Strength	
	iii) It improves Ductility	
	iv) It improves Corrosion Resistance	
		04
	2) Chromium:	
	i) It improves Ductility	
	ii) It is added in different proportions up to 18 %	
	iii) Below 1.5 % addition increases Tensile Strength	
	iv) 12 % addition gives high Corrosion Resistance	
	v) It improves Hardenability & Toughness simultaneously	
	3) Cobalt:	
	i) It improves Corrosion Resistance	
	i) It improves Thermal Resistance	
	iii) It improves Magnetic Properties	
	iv) It is act as a Grain Refiner	
	4) Manganese:	
	i) Lower proportions from 1.0 to 1.5 % improves Strength & Toughness	
	i) Higher proportions up to 5 % improves Hardness	
	iii) Very Higher proportions from 11 to 14 % improves very degree of Hardness	
	5) Silicon:	
	i) It is act as a Ferritic Strengthener	
	ii) It improves Elastic Limits	
	iii) It improves Magnetic Property	
	iv) It decreases Hysteresis Losses	
	6) Molybdenum:	
	i) It improves Hardness	
	ii) It improves Wear Resistance	
	iii) It improves Thermal Resistance	
	iv) It gives ability to maintain Mechanical Properties at Elevated Temperatures	
	7) Tungsten:	
	i) It improves Hardness	
	ii) It improves Wear Resistance	
	iii) It improves thermal Resistance	

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER- 19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

In full annealing process: In full annealing process the steel workpiece is heated to about 30 to 50^0 above the critical temperature AC ₃ , is held there until the temperature of the workpiece is uniform throughout and finally cooling the work piece at a controlled rate so that the	02
c) Describe full annealing process with its significance.	04
1V) It is also called as "Columbium"	
iii) It improves Fine Grain Growth	
ii) It improves Impact Strength	
i) It deceases Hardenability	
13) Niobium:	
1v) Its proportions varies from 0.2 % to 0.5 %	
iii) It improves Strength	
ii) It improves corrosion Resistance	
i) It improves Toughness	
12) Conner:	
iii) It forms titanium carbides means improves hardness	
ii) It is good Deoxidizer	
i) It improves Corrosion Resistance	
v) It improves Hardness by Nitriding to form Aluminum Nitrides	
iv) It improves growth of Fine Grains	
11) It improves Corrosion Resistance iii) It is used as a Deoxidizer	
i) It improves Tensile Strength	
10) Aluminium:	
v) it improves functionally vi) It is very useful when alloved with Low Carbon Steels	
1v) It improves Corrosion Resistance	
iii) It improves Ductility	
ii) It improves Tensile Strength	
i) It improves Toughness	
9) Boron:	
iii) It act as a Degasser when added to Molten Metal	
ii) It improves Shock Resistance	
i) It improves Elastic Limit	
8) Vanadium:	
vi) It gives ability to maintain Mechanical Properties at Elevated Temperatures	
v) It improves Magnetic Properties	
iv) It improves shock Resistance	

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER- 19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

		temperature of the surface and that of the center of the workpiece is approximately	
		the same.	
		I	
		1200 -	
		1100 A _{c3} Upper	
		range A	
		Vormalizing	
		Annealing Full annealing	
		Hardening Ag	
		727 700 A_1 Lower critical range	
		Process annealing	
		Stress relief annealing	
		500 0.4 0.8 1.2 1.6 2.0	
		Fig. Heat Treatment Process	
		Significance:	
		Full annealing process wipes out all traces of the previous structure, refines the	
		crystalline structure, soften the metal and relieves the internal stresses previously set	02
		up in the metal.	
	d)	Describe shell moulding process with its applications.	04
		Answer:	02
		Shell Moulding:	
		It is a process in which the sand mixed with a thermosetting resin is allowed to	
		come into contact with a neated metallic pattern plate, so that a trin and a strong shall of mould is formed around the pettern. Then the shall is removed from the	
		shell of mould is formed around the pattern. Then the shell is fellowed from the pattern and the cope and drag are removed together and kept in an flack with the	
		necessary back up material and the molten metal is poured into the mould	
		Generally dry and fine sand which is completely free from clay is used for preparing	
		the shell moulding sand .	
		The first step in preparing the mould is the preparation of sand mixture in such a	
		way that each of the sand grain is thoroughly coated with resin.	
		Only metal patterns with the associated gating are used.	
		The metallic pattern is heated to a temperature of 200 to 350° C. The heated pattern	
		is securely fixed to a dump box, as shown in fig. a, wherein the coated sand in an	
		amount larger than required to form the shell of necessary thickness is already filled	
		I hen the dump box is rotated as shown in fig. b, so that coated sand falls on the	
		sand mixture to adhere to the pattern	
		When a desired thickness of shell is achieved, the dump how is rotated backwards by	
		180° so that the excess sand falls back into the box leaving the formed shell intact	
		with the pattern as shown in fig.d.	
1	1		

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

		Coated sand (a) (b)	01
		Fig. Shell Moulding Process Applications of shell moulding: (Any Two Applications)	
		 Cylinders and cylinder neads for air cooled IC engines Automobile transmission parts Cast tooth bevel gears Brake beam Transmission plannet carrier Gear blanks Small crank shafts Refrigerator valve plate Chain seat bracket 	01
4		Attempt any THREE of the following:	12
	a)	Differentiate thermoplastic and thermosetting polymers.	04
		Answer: Difference between thermoplastic and thermo-setting plastic: (Any 04 – 01 mark each)Sr. No.ThermoplasticsThermosetting01They can be repeated softened by heat and hardened on coolingonce hardened and set they do not softened with application of heat02They are formed by addition polymerization onlyThey are formed by condensation polymerization03They consist of long chain linear polymers softened with application and more 	04
	b)	Illustrate the iron-carbide (Fe-Fe3 C) diagram showing critical temperature on it.	04

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Code: 22307

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) <u>MODEL ANSWER</u>

SUMMER- 19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

	The complete pattern with match plate is entirely made of metal, usually aluminum for its light weight and machinability. But when dimensions are critical, the match plate may be made of steel with necessary case hardening of the critical wear points. The pattern and gating are either screwed to the match plate in the case of a flat parting or are made integral in case of an irregular parting plane. This pattern is shown in figure. These are generally used for small castings with higher dimensional accuracy. The gating system is already made and attached to the match plate. Several patterns can be fixed to a single match plate, if they are sufficiently small in size. These patterns are used for machine moulding. They are expensive but since they increase productivity, the additional cost is justified.	04
d)	Use suitable pattern allowance to compensate the shrinkage problem during	04
	 Shrinkage Allowance: As metal solidifies and cools, it shrinks and contracts in size. To compensate for this, a pattern is made larger than the finished casting by means of a shrinkage or contraction allowance. To provide an allowance, a patternmaker uses shrink or contraction rule which is slightly longer than the ordinary rule of the same length. Different metals have different shrinkages; therefore, there is a shrink rule for each type of metal used in a casting. It is also called as contraction allowance When liquid metal starts to cool , metal gets shrink & reduces size of the component To reduce above problem, allowance are provided on the pattern Patterns are made larger than actual size Different metal have different shrinkage It has three forms (a) Liquid Contraction (b)Solidifying Contraction (c)Solid Contraction □First two are reduced by gates & risers Solid contraction can be reduced by providing more allowance on pattern 	04
e)	Explain the significance of gating system in casting process with the sketches.	04
	The term gating system in casting process: The term gating system refers to all passageways through which the molten metal passes to enter the mold cavity. It provides continuous, uniform feed of molten metal, with as little turbulence as	02

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

	(v) Large depth of cut	
	(vi) Low rake angle	
	Answer:(1 mark each)	
	(1) High rake angle : Continuous chips (ii) High systems aread a Continuous chips	
	(ii) High cutting speed : Continuous chips (iii) Small donth of out a Continuous chips	06
	(iii) Small depth of cut: Continuous chips (iv) I are autting groad. Continuous aking with built up adge	VO
	(iv) Low cutting speed :Continuous chips with built up edge	
	(v) Large depth of cut: Continuous chips with built up edge	
h)	(vi) Low lake angle .Continuous clips with built up euge	06
))	1 Back Dake Angle:	00
	1. Dack Kake Aligie.	
	Back rake angle is the angle between the face of the single point cutting tool and a	01
	line parallel with base of the tool measured in a perpendicular plane through the side	•=
	cutting edge. If the slope face is downward toward the nose, it is negative back rake	
	angle and if it is upward toward nose, it is positive back rake angle. Back rake angle	
	helps in removing the chips away from the workpiece.	
		01
	2. Side Rake Angle:	
	Side rake angle is the angle by which the face of tool is inclined side ways. Side	
	rake angle is the angle between the surface the flank immediately below the point	
	and the line down from the point perpendicular to the base. Side rake angle of	
	cutting tool determines the thickness of the tool behind the cutting edge. It is	
	provided on tool to provide clearance between workpiece and tool so as to prevent	
	the rubbing of workpiece with end flake of tool.	01
	3 End Relief Angle:	UI
	Find relief angle is defined as the angle between the portion of the end flank	
	immediately below the cutting edge and a line perpendicular to the base of the tool.	
	measured at right angles to the flank. End relief angle allows the tool to cut without	
	rubbing on the workpiece.	
	4. Side Relief Angle:	01
	Side relief angle is the angle between the portion of the side flank immediately	
	below the side edge and a line perpendicular to the base of the tool measured at right	
	angles to the side. Side relief angle is the angle that prevents the interference as the	
	tool enters the material. It is incorporated on the tool to provide relief between its	
	flank and the workpiece surface.	
	5 End Cratting Edge Angles	01
	5. End Cutting Edge Angle: End cutting edge angle is the angle between the and cutting edge and a line	UI
	perpendicular to the shank of the tool. It provides clearance between tool cutting	
	edge and workniece	
	cuge and workpreee.	
	6. Side Cutting Edge Angle:	
	Side cutting edge angle is the angle between straight cutting edge on the side of tool	01

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

	and the side of the shank. It is responsible for turning the chip away from the finished surface.	
c)	Explain properties and applications of GRP/CRP and CRP composites.	0
	Answer: (Explanation of any three properties= 3 marks) Properties of GRP(Glass Reinforced Plastic)/CRP (Carbon Reinforced Plastic):	0
	1.High corrosion resistance:	
	Offering exceptional corrosion resistance, GRP/CRP is highly tolerant of the most	
	aggressive of environments. Its total resistance against chloride ion attacks	
	demonstrates its durable nature and ability to withstand harsh conditions. Unlike	
	traditional alternatives, such as steel, aluminium and timber, GRP/CRP delivers a	
	long-term practical solution that overcomes the inherent corrosion challenges facing industry today.	
	2.High strength	
	GRP/CRP's superior tensile strength is equal to or greater than equivalent steel	
	profiles. Despite its lightweight properties, GRP/CRP offers impressive strength-to-	
	weight load-bearing performance. The high glass-to-resin ratios used in our	
	technically advanced formulation ensure our GRP/CRP products outperform and	
	outlast traditional materials.	
	3.Lightweight	
	75% lighter than steel equivalents, GRP/CRP significantly reduces transport costs	
	and eliminates the need for heavy lifting equipment. As it can be easily cut and	
	manoeuvred onsite, the risk of manual handling injuries is mitigated.	
	4.Non-conductive, inert and non-sparking	
	The non-conductive properties of GRP/CRP make it ideally suited for use on	
	electrically hazardous sites. A highly effective electromagnetic and thermal	
	insulator, it is electronically transparent and not affected by electromagnetic fields	
	or radio wave frequencies. The non-sparking qualities of GRP/CRP make it suitable	
	for locations where combustible gases may be present.	
	5.High impact resistance	
	GRP/CRP resists sudden and severe point loading and avoids permanent distortion.	
	If the GRP/CRP is deformed due to impact, it will return to its original shape	
1		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) <u>MODEL ANSWER</u>

SUMMER-19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

		without contractors having to incur costly repairs or replacements.	
		6.Easy to fabricate	
		GRP/CRP can be easily fabricated and cut onsite to accommodate precise	
		specifications and complex layouts. Using standard hand tools, such as circular	
		saws, contractors can easily cut the product without compromising any of its	
		advantageous properties.	
		7.Low maintenance	
		GRP/CRP is an incredibly resilient and durable material that delivers outstanding	
		cost benefits. GRP/CRP, in all its forms, offers a low maintenance solution with	
		little need for renovation or refurbishment during its fifty year lifespan.	
		Applications of (GRP/CRP):(Any six Applications)	
		Aerospace Engineering	03
		Automobile Engineering (Racing Cars)	
		Civil Engineering	
		Carbon-fiber Microelectrodes	
		Sports goods	
		Musical instruments	
		High-performance drone	
		Lightweight poles such as tripod legs etc	
		Denstistry	
6		Attempt any TWO of the following:	12
	a)	Sketch the block diagram of bench drilling machine showing its different parts. Answer: (Sketch 03 marks, Labeling 03 Marks)	06
		This work (one centres, Davening of Trains)	
			06

(ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER- 19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

MODEL ANSWER

SUMMER- 19 EXAMINATION

Subject Title: Materials and Manufacturing Processes

Subject Code:

	It means that for a length of 60mm, taper is 20mm, then taper in mm/meter = (20/60) X 1000 = 333.33 mm/meter 2. Taper angle for compound rest setting $\alpha = \tan^{-1} \frac{(D-d)}{\frac{2L}{2 \times 60}}$	02
	= 9.46° Compound rest should be set at angle $\alpha = 9.46^{\circ}$ 3. Tail stock set over	
	Assuming length of bar is equal to length of taper Tail stock set over = $(D-d)/2$ = $(50-30)/2$ = 10 mm	02
c)	Suggest and sketch a milling cutter for following milling operation. (i) Face milling (ii) Key-way milling (iii) 'T' slot	06
	(i) Face milling :Face Milling Cutter	01
	Depth	01
	(ii) Key-way milling:side milling cutters or end mills.	01
	Job	01
	(iii) 'T' slot: plain milling cutter, metal slitting saw or side milling cutter.	01
		01