22303

12223

3 Hours / 70 Marks
 Seat No.
 \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

> Marks

1. Attempt any FIVE of the following:

a) Define elastic limit and modulus of elasticity.
b) Define proof resilience and resilience.
c) Calculate modulus of elasticity for a member having $\mathrm{G}=70.37 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mu=0.35$.
d) Give the relation between Bulk Modulus and Young's Modulus.
e) Determine maximum shear force and maximum bending moment for a simply supported beam having 5 m span and carrying a central point load of 30 kN .
f) Give the relation between average and maximum shear stress for a triangular and a circular section.
g) Along with expression, define radius of gyration.
2. Attempt any THREE of the following:
a) Along with expression state parallel axis theorem and perpendicular axis theorem.
b) A triangle ABC has base $\mathrm{BC}=90 \mathrm{~mm}$ and vertical side $\mathrm{AB}=115 \mathrm{~mm}$ such that $\angle \mathrm{B}=90^{\circ}$. Calculate MI of the triangle about sides $A B$ and $B C$.
c) Calculate polar MI of semi circle having 80 mm diameter. Also calculate minimum radius of gyration. Diameter is parallel to yy axis.
d) Find the least MI of a symmetrical section having the following details. Flanges $120 \mathrm{~mm} \times 12 \mathrm{~mm}$, overall depth $=280 \mathrm{~mm}$, thickness of web $=10 \mathrm{~mm}$.

3. Attempt any THREE of the following:

a) A steel rod of 32 mm diameter and 2 m long is subjected to an axial pull of 60 kN . Find
i) Stress
ii) Strain and
iii) Elongation.

Take E $=200 \mathrm{GPa}$.
b) A circular bar having $300 \mathrm{~mm}^{2}$ area is subjected to axial loads as shown in the Fig. No. 1. Find the value of P and the total elongation. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. No. 1.
c) A steel rod 15 m long is at a temp of $20^{\circ} \mathrm{C}$. Find the free expansion of rod when temp is raised to $80^{\circ} \mathrm{C}$. If 40% of free expansion is permitted, calculate the temperature stress produced. Take $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\mathrm{E}=200 \mathrm{GPa}$.
d) A RCC column 500 mm diameter is reinforced with 6 bars of 20 mm diameter. Find the safe load that the column can carry. If permissible stress in concrete and steel are $5 \mathrm{~N} / \mathrm{mm}^{2}$ and $130 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Take $\mathrm{E}_{\mathrm{c}}=0.14 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{Es}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

4. Attempt any THREE of the following:

a) A steel bar, $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ in section and 4 m long is subjected to an axial pull of 130 kN . If the change in length is 1.5 mm (increase) and change in width is 0.0060 mm (decrease). Calculate modulus of elasticity and poisson's ratio.
b) A cube of 400 mm side is subjected to tensile forces of $60 \mathrm{kN}, 70 \mathrm{kN}$ and 80 kN in three principle direction, $\mathrm{E}=200 \mathrm{GPa}$ and Poisson's ratio $=0.28$. Calculate the change in volume.
c) Draw SFD and BMD for a simply supported beam as shown in the Fig. No. 2.

Fig. No. 2.
d) A column having diameter 300 mm is 5 m long. Determine Euler's crippling load if both ends of the column are fixed. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
e) Determine Rankine's crippling load for a hollow circular CI column of external diameter 100 mm and 20 mm thick. It is 3 m long with both ends fixed. Take $\sigma_{c}=500 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1 / 1600$.
5. Attempt any TWO of the following:
a) Draw SF and BM diagram for the cantilever beam as shown in Fig. No. 3.

Fig. No. 3.
b) Draw SF and BM diagram for the simply supported beam as shown in Fig. No. 4.

Fig. No. 4.
c) Draw SF and BM diagram for the overhanging beam as shown in the Fig. No. 5.

Fig. No. 5.
6. Attempt any TWO of the following:
a) i) A rectangular beam section is used as a simply supported beam over a span of 5 m . Calculate the downward point load at mid-span the beam can carry, if the maximum bending tensile stress is not to exceed $10 \mathrm{~N} / \mathrm{mm}^{2}$, width $=120 \mathrm{~mm}$, depth $=250 \mathrm{~mm}$.
ii) A beam carries an udl of $25 \mathrm{kN} / \mathrm{m}$ over the entire span of 7 m . Beam has rectangular section of width 230 mm and depth 350 mm . Determine max shear stress at a section 1 m from the support.
b) A tee section having flange 180 mm wide and 20 mm thick and web 150 mm long and 20 mm thick carries a udl of $90 \mathrm{kN} / \mathrm{m}$ over an effective span of 8 m . Determine the maximum bending tensile and bending compressive stress developed and their position, showing stress distribution diagram.
c) A beam has hollow rectangular section with external dimensions $80 \mathrm{~mm} \times 160 \mathrm{~mm}$ and uniform thickness of section is 10 mm . Draw shear stress variation diagram if section is subjected to a shear force of 80 kN . Also determine the ratio of maximum shear stress and average shear stress.

