

Instructions : (1) All questions are compulsory.
(2) Answer each next main question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any five of the following :
a) Giving expression, define shear modulus.
b) Define resilience and proof resilience.
c) Define volumetric strain. Also give the relation between lateral stain and Poisson's ratio.
d) For a certain material, the modulus of elasticity is $200 \mathrm{~N} / \mathrm{mm}^{2}$. If Poisson's ratio is 0.35 , calculate Bulk modulus.
e) Determine maximum shear force and maximum bending moment for a cantilever having 4 m span carrying udl of intensity $25 \mathrm{kN} / \mathrm{m}$.
f) Give the expression for maximum bending stress with meaning of each term.
g) Along with expression, define slenderness ratio.
2. Attempt any three of the following :
a) Along with the expression define radius of gyration and sectional modulus.
b) For a circular lamina of diameter 100 mm , calculate the moment of inertia and radius of gyration about any tangent.
c) Calculate the moment of inertia for an inverted T -section about its horizontal centroidal axis. Take the size of flange $100 \mathrm{~mm} \times 30 \mathrm{~mm}$ and vertical web $120 \mathrm{~mm} \times 30 \mathrm{~mm}$, overall depth $=150 \mathrm{~mm}$.
d) Determine the moment of inertia of an angle section $100 \mathrm{~mm} \times 80 \mathrm{~mm} \times 10 \mathrm{~mm}$ about vertical centroidal axis. Longer leg is vertical.
P.T.O.
3. Attempt any three of the following :
a) A load of 6 kN is to be raised with the help of steel cable. Determine the minimum diameter of steel cable if stress is not to exceed $110 \mathrm{~N} / \mathrm{mm}^{2}$.
b) A steel rod 15 m long is at a temperature of $15^{\circ} \mathrm{C}$. Find the free expansion of the length when the temperature is raised to $65^{\circ} \mathrm{C}$. Find the temperature stresses when the expansion of the rod is fully prevented.

Take, $\alpha=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$.
$\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
c) A steel bar is 900 mm long; its two ends are 40 mm and 30 mm in diameter and the length of each part of rod is 200 mm . The middle portion of the bar is 15 mm in diameter and 500 mm long. If the bar is subjected to an axial tensile load of 15 kN , find its total extension.
d) A R.C.C. column is $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ in section. It is provided with 8 bars of 20 mm diameter. Determine the stresses induced in concrete and steel bars, if it carries a load of 180 kN . Take, $\mathrm{E}_{\mathrm{s}}=210 \mathrm{GPa}, \mathrm{E}_{\mathrm{c}}=14 \mathrm{GPa}$.
4. Attempt any three of the following :
a) For a given material, Young's modulus is $110 \mathrm{GN} / \mathrm{m}^{2}$ and shear modulus is $42 \mathrm{GN} / \mathrm{m}^{2}$. Find the Bulk modulus and lateral contraction of a round bar of 37.5 mm diameter and 2.4 m length when stretched by 2.5 mm . when subjected to an axial load.
b) A cube of 100 mm size is subjected to a direct load of 50 kN (compressive) on all its faces. Find the change in volume if $\mathrm{K}=1.3 \mathrm{GPa}$ and $\mu=0.30$.
c) A beam $A B C D$ is supported at ' A ' and ' D '. $A B=B C=C D=2 m$. It is subjected to udl of $10 \mathrm{kN} / \mathrm{m}$ over AB and a point load of 20 kN at ' C '. Draw shear force and bending moment diagrams.
d) A solid circular column is 4 m long with both ends fixed, carries a safe axial load 500 kN . Using Euler's equation, calculate the diameter of column. Take E $=100 \mathrm{kN} / \mathrm{m}^{2}$ and Factor of safety 2.5.
e) Determine the safe load on column of 6 m length, with both ends fixed.

The properties of section are :
$\mathrm{A}=1777 \mathrm{~mm}^{2}$
$\mathrm{I}_{\mathrm{xx}}=1.16 \times 10^{7} \mathrm{~mm}^{4}$
$\mathrm{I}_{\mathrm{yy}}=0.84 \times 10^{6} \mathrm{~mm}^{4}$
$\sigma_{\mathrm{C}}=320 \mathrm{MPa}$
$\alpha=\frac{1}{7500}$
Take, factor of safety $=4$. Use Rankine's formula.
5. Attempt any two of the following :
a) Draw shear force and bending moment diagrams for the cantilever beam loaded as shown in figure 1. Indicate all important values.

[Figure 1]
b) Draw shear force and bending moment diagrams for the beam as shown in fig. 2

[Figure 2]
c) Draw shear force and bending moment diagram for an overhang beam loaded as shown in fig. 3.

[Figure 3]
6. Attempt any two of the following :
a) Attempt the following :
i) Find the bending stress at a distance of 25 mm below top edge of rectangular beam section $80 \mathrm{~mm} \times 240 \mathrm{~mm}$ deep if maximum bending moment is $5 \mathrm{kN} . \mathrm{m}$.
ii) A circular beam carries a maximum shear force of 10 kN . Find the necessary diameter of the beam if maximum shear stress is limited to $1.5 \mathrm{~N} / \mathrm{mm}^{2}$.
b) A symmetrical I section 500 mm deep is simply supported at ends having span 5 m and udl $20 \mathrm{kN} / \mathrm{m}$ over entire span. Size of flanges are $250 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web 10 mm thick. Calculate the magnitude of maximum bending stress induced. Draw stress distribution diagram.
c) A simply supported beam carries a udl of intensity $2.5 \mathrm{kN} / \mathrm{m}$ over entire span of 5 m . The cross section of beam is a T-section having the dimensions given below. flange : $125 \mathrm{~mm} \times 25 \mathrm{~mm}$
web : $175 \mathrm{~mm} \times 25 \mathrm{~mm}$, overall depth $=200 \mathrm{~mm}$.
Calculate the maximum shear stress for the section of the beam. Construct shear distribution diagram.

