| WINTER- 18 EXAMINATION | |
| :--- | :--- | :--- |
| Subject Name: Advanced Surveying \quad Model Answer | Subject Code: 22301 |

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	A)	Attempt any FIVE of the following	(10)
Q.1	(a) Ans.	State the situations where plane table survey is suitable. Following are the situations where plane table survey is suitable i) It is suitable in localities where the compass survey is unreliable due to local attraction. ii) When map is required to prepare in less time.	02 M
Q.1	(b) Ans.	Define telescope inverted and telescope normal. Telescope inverted The position of telescope with face right is known as telescope inverted. Telescope normal The position of telescope with face left is known as telescope normal.	01 M
Q.1	(c) Ans. State any four uses transit theodolite. Following are the uses of transit theodolite. i) To measure horizontal angle. ii) To measure vertical angle. iii) To measure magnetic bearing of survey line. iv) To prolong a straight line.	01 M	
Q.1	(d) Ans.State any two object of tachometry. Following are two object of tacheometry i) To obtain horizontal distances from instrument station to staff station from the readings upon stadia rod ii) To obtain vertical distances or RL of staff station from the readings upon stadia rod.	01 M	
Q.1	(e) Ans. Enlist the types of curve used in roads and railway alignment. Following are the curve used in road and railway alignment. 1. Horizontal Curve i) Simple Curve ii) Compound Curve iii) Reverse Curve iv) Transition Curve v) Lemniscates Curve	02 M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

		2. Vertical Curve i) Summit Curve ii) Valley Curve			01 M
Q. 1	(f) Ans.	State any two features of digital theodolite. Following are the features of digital theodolite i) Dual side display and keyboard with push button keys ii) Built in illumination for night operation. iii) Rechargeable Ni-Cd battery with auto power cut off. iv) Compatibility with EDMs			Any two 01 M for each
Q. 1	(g) Ans.	State the object of remote sensing. Object of remote sensing is to collect and interpret information about terrain and other object from a distance without being in physical contact with the object.			02 M
Q. 2		Attempt any THREE of the following			(12)
Q. 2	(a) Ans.	State the accessories required for plane table survey along with their use. Following are the accessories required for plane table survey.			Any four 01 M for each
		Accessories		Use	
		Drawing board	To fix the sheet on which map should be drawn.		
		Alidade	To bisect the object and to draw the ray.		
		Trough Compass	To mark north direction on the drawing sheet.		
		Plumbing fork or U frame	Used for centering the table.		
		Bubble tube / spirit level	Leveling the table.		
		Drawing sheet	To draw plan or map		
Q. 2	(b) Ans.	Explain the function of lower tangent screw, upper tangent screw, lower clamping screw and upper clamping screw while measuring horizontal angle using theodolite.			$\begin{aligned} & 04 \mathrm{M} \text { (01 } \\ & \text { M for } \\ & \text { each) } \end{aligned}$
		Screw		Function	
		Lower tangent screw	It controlled reading)	circular motion.(Without changing	
		Upper tangent screw	It controlled	circular motion.(changing reading)	
		Lower clamping screw	Clamp the lo base(instrum	plate and outer spindle to the leveling rotate without changing reading)	
		Upper clamping screw	It clamp upper and lower plate (Instrument rotate, reading also changes)		
Q. 2	(c) Ans.	Differentiate between theodolite and tacheometer. Give any two characteristics of tacheometer. Difference between theodolite and tacheometer.			Any two 01 M for each Any two 01 M for
		Theodolit		Tacheometer	
		Used for measurement of angle, vertical angle, bea	of horizontal aring etc.	Used for computing horizontal distance from instrument station to staff station and RL of staff station.	
		Stadia diaphragm is not e	essential.	Stadia diaphragm is essential.	
		Anallatic lens is not requi	ired.	It is beneficial to have annalitic lens in tacheometer.	
		Characteristics of tacheometer. 1. The value of constant $f / i=100$ Where, $f=$ focal length $i=$ length of image. 2. The telescope should be powerful, the magnification should be 20 to 30 times the Diameter. 3. The telescope should be fitted with anallatic lens to have the value of $f+c=0$			

		4. The vision through the telescope should give a clear and bright image at a long distance. 5. The aperture of the objective should be 35 to 45 mm in diameter in order to have a Sufficiently bright image.	each
Q. 2	(d) Ans.	Draw neat sketch of circular curve and show following element: i) Tangent length ii) Deflection angle iii) Apex distance iv) Length of long chord i) Tangent length - BT1 and BT2 ii) Deflection angle - θ iii) Apex distance - BE iv) Length of long chord - T1DT2 (Note: Student may show the element on diagram also)	02 M $02 \text { M }$
Q. 3		Attempt any THREE of the following	(12)
Q. 3	(a) Ans.	Explain temporary adjustment of theodolite. The temporary adjustments have to be carried out at every set-up of instrument before taking observations with the theodolite. 1) Setting up the theodolite: Setting up of the theodolite include: a) Centering it over the station: Procedure: 1) Place the tripod over the stations by spreading its legs at a convenient height. 2) Suspend the plumb bob over the station and bring it exactly over the station point by moving it radially as well as circumferentially, then press the legs firmly into the ground. 3) By this the instrument is approximately levelled also. 2) Levelling up: Accurate levelling is done with reference to the plate level by means of footscrews. The object of levelling is to make the vertical axis truly vertical. Procedure: 1) Turn the theodolite until the plate bubble is parallel to any one of the pair of footscrews. 2) Turn the theodolite about its centre of its run by turning both, foots crews uniformly.By thumb and forefingers either moves it towards each other or away from each other.	$01 \mathrm{M})$

		3) Turn the theodolite until the bubble is perpendicular to the previous position. Now, move the third footscrew until the bubble is brought to the centre of the run. 4) Repeat the process for the other two pairs. 5) Now rotate the theodolite about the vertical axis through 360°. The bubble will remain central provided it is in correct adjustment. The vertical axis is made thus truly vertical. 3) Focussing the eye piece : Focussing the eye-piece makes the cross hairs on the diaphragm distinct and clear. To do this, direct the telescope towards the sky or hold a sheet of white paper in front of the object glass and move the eye piece circumferentially or in or out until the cross-hairs are seen sharp and black. 4) Focussing the object glass : Focussing the object glass is to bring the image of the object formed by the object glass exactly in the plane of the cross hair. If not accurately done there is a apparent movement of the image when the observer moves up and down. This is affect of parallax. This can be removed with sharp focusing.		01 M
Q. 3	(b) Ans.	State 4 component parts of digital theodolite and state their purpose.		Any four 01 M for each
		Components	Purpose	
		Levelling head	Support the theodolite and enable leveling of instrument.	
		Clamping screw	To controlled the circular motion of telescope.	
		Telescope	To bisect the object.	
		Plate level	To check the leveling of instrument.	
		Optical plummet	Centering of the instrument.	
		Display window	Reading horizontal and vertical angle.	
Q. 3	(c) Ans.	Explain the procedure of measurement of vertical angle using one second micro optic theodolite. Procedure: i) Set up the instrument at station O^{\prime} as shown in fig. ii) Carry out centering and leveling of the instrument with the help of optical plummet and leveling screw respectively. iii) Bisect the object using micrometer knob. iv) Take a reading of vertical angle on window. (a) Elevation angle (b) Depression angle		04 M
Q. 3	(d)	Define following terms and give any 2 components of each:		

		$\begin{align*} & 25=f / i \times(1.900-1.410)+(f+c) \tag{1}\\ & D_{2}=f / i \times S_{2}+(f+c) \\ & 50=f / i \times(2.220-1.230)+(f+c) \tag{2} \end{align*}$ Solving equation $1 \& 2$ simultaneously $\begin{aligned} & \mathrm{f} / \mathrm{i}=50 \\ & (\mathrm{f}+\mathrm{c})=0.50 \mathrm{~m} \end{aligned}$										01 M
												01 M $02 \text { M }$
Q. 4	(e) Ans:	Calculate the ordinates at $\mathbf{2 5} \mathbf{m}$ interval to set out a circular curve having a long chord of 300 m and versed sine of 10 m . Given: $L=300 \mathrm{~m}$, interval $x=25 \mathrm{~m}$, versed sine $=10 \mathrm{~m}$ Versed Sine is the offset of the curve at middle of the long chord $=00$ $\mathrm{OO}=\mathrm{R}-\mathrm{V} R^{2}+(L / 2)^{2}$ Where $R=$ Radius of curve, $L=$ Length of long chord $\begin{aligned} & 10=\mathrm{R}-\mathrm{V} R^{2}+(300 / 2)^{2} \\ & \mathrm{R}=1130 \mathrm{~m} \end{aligned}$ The ordinates at distance x from the midpoint may be calculated by $\mathrm{Ox}=\mathrm{V} R^{2}-(x)^{2}-\left(\mathrm{R}-\mathrm{O}_{0}\right)$ Ordinates at 25 m interval are: $\begin{aligned} & \mathrm{O} 25=\mathrm{V} 1130^{2}-(25)^{2}-(1130-10)=9.70 \mathrm{~m} \\ & \mathrm{O} 50=\mathrm{V} 1130^{2}-(50)^{2}-(1130-10)=8.89 \mathrm{~m} \\ & \mathrm{O} 75=\mathrm{V} 1130^{2}-(75)^{2}-(1130-10)=7.51 \mathrm{~m} \\ & \mathrm{O} 100=\mathrm{V} 1130^{2}-(100)^{2}-(1130-10)=5.56 \mathrm{~m} \\ & \mathrm{O} 125=\mathrm{V} 1130^{2}-(125)^{2}-(1130-10)=3.06 \mathrm{~m} \\ & \mathrm{O} 150=\mathrm{V} 1130^{2}-(150)^{2}-(1130-10)=0.00 \mathrm{~m} \text { Hence OK } \end{aligned}$										02 M
Q. 5		Attempt any TWO of the following :										(12)
Q. 5	(a) Ans:	Calculate independent co-ordinates of all the survey lines of the traverse:										
		Line Length (m) Bearing				BC		CD		DA		
						850		408		828		
					$0^{\circ} 20^{\prime}$			$357{ }^{0}$		$365{ }^{\circ}$		
		Line	Leng th	Bearing	R.B	Cons. Co	rdinates	Corr	tion	Correcte ordi	cons. Co- ates	
			(m)			Lat	Dep	Lat	Dep	Lat	Dep	
		AB	335	$180^{\circ} 20^{\prime}$	$50^{\circ} 20^{\prime} \mathrm{W}$	-334.99	-1.94	123.478	124.377	-458.468	-126.317	
		BC	850	$90^{\circ} 20^{\prime}$	$589^{\circ} 40^{\prime} \mathrm{E}$	-4.94	849.98	313.303	315.583	-318.243	534.397	
		CD	408	357°	$\mathrm{N} 3^{\circ} 00^{\prime} \mathrm{W}$	407.44	21.35	150.385	151.480	257.055	-172.830	
		DA	828	$365{ }^{\circ}$	N5 ${ }^{\circ} 00^{\prime}$ E	824.85	72.165	305.194	307.415	519.656	-235.250	
		TOT AL	2421			892.360	898.855	-892.360	-898.855	0	0	
		Calculation of reduced bearings : Line $A B, R B=180^{\circ} 20^{\prime}-180^{\circ}=50^{\circ} 20^{\prime} W$										

		Line $\mathrm{BC}, \mathrm{RB}=180^{\circ}-90^{\circ} 40^{\prime}=589^{\circ} 40^{\prime} \mathrm{E}$ Line $C D, R B=360^{\circ}-357^{\circ}=N 3^{\circ} 00^{\prime} \mathrm{W}$ Line DA, RB $=365^{\circ}-360^{\circ}=N 5^{\circ} 00^{\prime} E$ Calculations of latitudes: Latitude $=\mathrm{L} \cos \theta$ Line $A B=335 \times \cos \left(0^{\circ} 20^{\prime}\right)=-334.99$ Line $B C=850 \times \cos \left(89^{\circ} 40^{\prime}\right)=-4.94$ Line $C D=408 \times \cos \left(3^{\circ} 00^{\prime}\right)=407.44$ Line $D A=828 \times \cos \left(5^{\circ} 0^{\prime}\right)=824.85$ Error in sum of latitudes $=892.360$ Correction will have -ve sign Calculation of Departures: departure $=L \sin \theta$ Line $A B=335 x \sin \left(0^{\circ} 20^{\prime}\right)=-1.94$ Line $B C=850 x \sin \left(89^{\circ} 40^{\prime}\right)=849.98$ Line $C D=408 x \sin \left(3^{0}\right)=-21.35$ Line $D A=828 x \sin \left(5^{\circ}\right)=72.165$ Error in sum of departures $=898.855$ Correction will have -ve sign Bowditch's Rule: Correction to latitude or departure of any side $=$ total error in latitude or departure \times (length of that side/ perimeter of traverse) Perimeter of traverse $=335+850+408+828=2421 \mathrm{~m}$ Corrections to latitudes: Line $A B=892.360 \times 335 / 2421=123.478$ Line $B C=892.360 \times 850 / 2421=313.303$ Line CD $=892.360 \times 408 / 2421=150.385$ Line DA $=892.360 \times 828 / 2421=305.194$ Corrections to departure: Line $A B=898.855 \times 335 / 2421=124.377$ Line $B C=898.855 \times 850 / 2421=315.583$ Line CD $=898.855 \times 408 / 2421=151.480$ Line DA $=898.855 \times 828 / 2421=307.415$ Corrected latitudes: Line $A B=-334.99-123.478=-458.468$ Line $B C=-4.94-313.303=-318.243$ Line CD=407.44-150.385=257.055 Line DA $=824.85-305.194=519.656$ Corrected departures: Line $A B=-1.94-124.377=-126.317$ Line $B C=849.98-315.583=534.397$ Line $C D=-21.35-151.480=-172.830$ Line DA $=72.165-307.415=-235.250$ Note: Data given seems to be incorrect, especially bearing of line DA; hence calculated corrections in Latitude and Departure are absurd. Hence just after calculation of Latitudes and Departures of all line, full marks shall be given.	02 M 02 M
Q. 5	(b) Ans:	Explain Bowditch Rule as applicable in a theodolite traverse. 1) The rule, also termed as the compass rule, is used to balance the traverse when the angular and linear measurements are equally precise.	

| | 2) By this rule, the total error in latitude and in departure is distributed in proportion to the
 lengths of the sides.
 3) This rule is most commonly used in traverse adjustment.
 Correction to latitude
 $=$ total error in latitude x (length of that side/ perimeter of traverse).
 4) Correction to departure
 $=$ total error in departure x
 (length of that side/ perimeter of traverse)
 6) After applying correction summation all latitudes and departures must be zero. | 06 M |
| :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
4) It is used to prepare a layout map for water supply sanitary or drainage scheme. \\
5) To prepare a L section and cross section of a project (Roads, \\
Irrigation canal etc.) In order to determine the volume of earth work. \\
6) To determine altitude of different important points. \\
7) To prepare a counter map for fixing sights for a different structure. \\
(ii)Salient features of Total Station. \\
1 High accuracy. \\
2 Long measuring range. \\
3 Large internal memory. \\
4 It is water resistance and dust proof. \\
5 Easy access to any desired programme and mode of selection. \\
6 Try axis compensation. \\
7 Easy to read arrangement. \\
8 Automatic atmospheric correction. \\
9 Guide message arrangement. \\
10 Higher distance resolution. \\
11 Two speed tangent movement. \\
12 Detachable tribach facility. \\
13 Eighteen different programmes (modes of measurements).
\end{tabular} \& \begin{tabular}{l}
(any \\
three) \\
01 M \\
each \\
(any \\
three)
\end{tabular} \\
\hline Q. 6 \& \begin{tabular}{l}
(b) \\
Ans:
\end{tabular} \& \begin{tabular}{l}
Explain procedure of measuring distance using EDM. \\
Let distance \(A B\) is to be measured. \\
1. Set EDM at station \(A\). Touch ON/OFF switch. Display panel will give reading 0.0 . \\
2. Hold the reflector at \(B\) \\
3. Telescope of EDM sighted towards B with cross hair at center of reflector. \\
4. Press Range or Enter switch and in few seconds, distance will be displayed. Distances displayed will be horizontal distance and sloping distance between \(A\) and \(B\), also elevation difference between A and B.
\end{tabular} \& 06 M \\
\hline Q. 6 \& (c) \& \begin{tabular}{l}
Explain the application of remote sensing in the following area : \\
(i) Land use \\
(ii) Disaster management \\
(iii) Environment \\
i) Land use or Land cover analysis: Remote sensing techniques are useful for taking images of large area quickly, and it is cheaper than ground surveying. \\
ii) Disaster management: In case of earthquakes, landslides, volcanic eruptions and floods and natural hazards, remote sensing can prevent and minimize the damage by analysing the geological formation of the area, thereby identifying the risk prone areas. It is possible to give specific warning of certain natural hazards and assess the damage caused and thereby help in the rescue and aid operations. \\
iii) Environment: \\
- Remote sensing is useful in weather forecasting. \\
- May aspects of ocean becoming better known through remote sensing techniques. \\
- Pollution in the form of oil spills and thermal plumes can easily be monitored. \\
- Study about Ozone layer depletion and global warming can be possible by using remote sensors.
\end{tabular} \& 02 M
02 M

02 M

\hline
\end{tabular}

