MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subject Code: 22301 **Subject Name: Advanced Surveying Model Answer**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.N.		Scheme
Q.1	A)	Attempt any FIVE of the following	(10)
Q.1	(a)	State the situations where plane table survey is suitable.	
	Ans.	Following are the situations where plane table survey is suitable	02 M
		i) It is suitable in localities where the compass survey is unreliable due to local attraction.	
		ii) When map is required to prepare in less time.	
Q.1	(b)	Define telescope inverted and telescope normal.	
	Ans.	Telescope inverted	01 M
		The position of telescope with face right is known as telescope inverted.	
		Telescope normal	01 M
		The position of telescope with face left is known as telescope normal.	
Q.1	(c)	State any four uses transit theodolite.	
	Ans.	Following are the uses of transit theodolite.	
		i) To measure horizontal angle.	
		ii) To measure vertical angle.	02 M
		iii) To measure magnetic bearing of survey line.	
		iv) To prolong a straight line.	
Q.1	(d)	State any two object of tachometry.	
	Ans.	Following are two object of tacheometry	
		i) To obtain horizontal distances from instrument station to staff station from the readings	01 M
		upon stadia rod	
		ii) To obtain vertical distances or RL of staff station from the readings upon stadia rod.	01 M
Q.1	(e)	Enlist the types of curve used in roads and railway alignment.	
	Ans.	Following are the curve used in road and railway alignment.	
		1. Horizontal Curve	
		i) Simple Curve ii) Compound Curve iii) Reverse Curve	01 M
		iv) Transition Curve v) Lemniscates Curve	

	<u> </u>	2. Vertical Curve			01 M			
			ey Curve		OT IVI			
Q.1	(f)	State any two features o	•	lita				
Q.1	Ans.	Following are the feature	_					
	Alis.	i) Dual side display and ke	_		Any two			
		•	01 M for					
		ii) Built in illumination for iii) Rechargeable Ni-Cd ba	•		each			
		iv) Compatibility with EDI	•	power cut on.	Cacii			
Q.1	(g)	State the object of remo						
~	Ans.	_	_	d interpret information about terrain and other	02 M			
		_		physical contact with the object.	0			
Q.2		Attempt any THREE of th		, 5	(12)			
Q.2	(a)	· · · · · · · · · · · · · · · · · · ·		table survey along with their use.	()			
۷	Ans.	-	•	, ,				
		Following are the accessories required for plane table survey. Accessories Use						
		Drawing board	To fix the sl	heet on which map should be drawn.	Any four			
		Alidade		ne object and to draw the ray.	01 M for			
		Trough Compass		rth direction on the drawing sheet.	each			
		Plumbing fork or U fram		ntering the table.				
		Bubble tube / spirit leve						
		Drawing sheet	To draw pla					
Q.2	(b)	Explain the function of lower tangent screw, upper tangent screw, lower clamping screw						
۷	Ans.	and upper clamping screw while measuring horizontal angle using theodolite.						
		Screw		Function				
		Lower tangent screw	It controlled fine circular motion.(Without changing					
			reading)					
		Upper tangent screw		ne circular motion.(changing reading)	M for			
		Lower clamping screw	Clamp the lower plate and outer spindle to the leveling					
			base(instrument rotate without changing reading)					
		Upper clamping screw	It clamp upper and lower plate (Instrument rotate, reading					
		also changes)						
Q.2	(c)	Differentiate between th	eodolite and ta	cheometer. Give any two characteristics of				
		tacheometer.						
	Ans.	Difference between theo	dolite and tache	eometer.				
		Theodoli	te	Tacheometer				
		Used for measurement	of horizontal	Used for computing horizontal distance	Any two			
		angle, vertical angle, bea	aring etc.	, ,				
				and RL of staff station.	each			
		Stadia diaphragm is not	essential.	ssential. Stadia diaphragm is essential.				
		Anallatic lens is not requ	ıired.					
		tacheometer.						
		Characteristics of tacheo						
				f = focal length i = length of image.				
		•	e powerful, the	magnification should be 20 to 30 times the	Any two			
		Diameter.						
		3. The telescope should b	e fitted with an	allatic lens to have the value of f +c = 0	01 M for			

		4. The vision through the telescope should give a clear and bright image at a long distance. 5. The aperture of the objective should be 35 to 45mm in diameter in order to have a Sufficiently bright image.	each
Q.2	(d)	Draw neat sketch of circular curve and show following element: i) Tangent length ii) Deflection angle iii) Apex distance iv) Length of long chord	
	Ans.	B θ = Deflection angle	
		Angle of intersection	
		E Simple circular curve	02 M
		Second or forward	
		Back tangent T1 D T2 tangent at T2	
		or first tangent at T ₁	
		C R B	
		0	
		i) Tangent length - BT1 and BT2	02 M
		ii) Deflection angle - θ	
		iii) Apex distance – BE	
		iv) Length of long chord – T1DT2	
		(Note: Student may show the element on diagram also)	(4.0)
Q.3		Attempt any THREE of the following	(12)
Q.3	(a)	Explain temporary adjustment of theodolite.	
	Ans.	The temporary adjustments have to be carried out at every set-up of instrument before	
		taking observations with the theodolite.	
		1) Setting up the theodolite:	
		Setting up of the theodolite include:	01 M)
		a) Centering it over the station:	
		Procedure:	
		1) Place the tripod over the stations by spreading its legs at a convenient height.	
		2) Suspend the plumb bob over the station and bring it exactly over the station point by	
		moving it radially as well as circumferentially, then press the legs firmly into the ground.	
		3) By this the instrument is approximately levelled also.	
		2) Levelling up:	01 M
		Accurate levelling is done with reference to the plate level by means of footscrews. The	01111
		object of levelling is to make the vertical axis truly vertical.	
		Procedure:	
		1) Turn the theodolite until the plate bubble is parallel to any one of the pair of	
		footscrews.	
		2) Turn the theodolite about its centre of its run by turning both, foots crews uniformly.By	

	<u> </u>	2) Turn the theodelite until t	the bubble is perpendicular to the previous position.	Now					
		move the third footscrew un	til the bubble is brought to the centre of the run.	1400,					
		4) Repeat the process for the other two pairs. 5) Now rotate the theodolite about the vertical axis through 360°. The bubble will							
		remain central provided it is in correct adjustment. The vertical axis is made thus							
		truly vertical.	m contest adjustment the vertical axis is made that	,					
		3) Focussing the eye piece :			01 M				
			kes the cross hairs on the diaphragm distinct and	clear. To do	OI WI				
		, ,	owards the sky or hold a sheet of white paper in						
		1	eye piece circumferentially or in or out until the cro	oss-hairs are					
		seen sharp and black.							
		4) Focussing the object glass	5 :						
			s to bring the image of the object formed by the		01 M				
		1 .	oss hair. If not accurately done there is a apparent n						
		removed with sharp focusing	ver moves up and down. This is affect of parallax.	rnis can be					
Q.3	(b)	·	digital theodolite and state their purpose.						
	Ans.	Components	Purpose		Any four				
		Levelling head	Support the theodolite and enable leveling of		01 M for				
			instrument.		each				
		Clamping screw	To controlled the circular motion of telescope.						
		Telescope Plate level	To bisect the object. To check the leveling of instrument.						
		Optical plummet	Centering of the instrument.						
		Display window	Reading horizontal and vertical angle.						
Q.3	(c)	· · · · · · · · · · · · · · · · · · ·	easurement of vertical angle using one second micro	o optic					
		theodolite.							
	Ans.	Procedure:							
		i) Set up the instrument at st	-						
		, ,	veling of the instrument with the help of optical plu	mmet and					
		leveling screw respectively.	Canana atau lua ah						
		iii) Bisect the object using mi iv) Take a reading of vertical			04 M				
		iv) rake a reading of vertical	aligle off willdow.		04 IVI				
			▶ •						
		<i>(</i> 1)							
		0'	P' Ο' α ₂						
		(2) (Elevation angle						
		(a)	ang.						
			P" (b) Depression angle						
			(-) ->p.000.00. di.g.0						
Q.3	(d)	Define following terms and	give any 2 components of each:						

		i) GIS ii)GPS						
	Ans.	i) GIS						
	Alis.	GIS ia a system that collects, displays, manages and analyzes geographic information.						
		Component of GIS	01 M					
		i) Hardware	01 M for					
		ii) Software	any two					
		iii)Data	arry two					
		iv) People						
		ii)GPS	01 M					
			OT IVI					
		GPS is satellite navigation system used to determine the ground position of an object.	01 M for					
		Component of GPS						
		i) Ground control station	any two					
		ii) Satellites						
0.4		iii) Receivers	(42)					
Q.4	۵)	Attempt any THREE of the following:	(12)					
Q.4	a)	State any four advantages and disadvantages of plane table survey. 1. It is the most rapid method of surveying.						
	Ans:	, ,						
		2. There is no need for a field book as plotting is done along with the field work. So, the						
		problem of mistake in booking field notes does not arise.	A £					
		3. Plotted work can be compared with actual object regardless of whether or not they	Any four					
		are properly represented.	1/2 M					
		4. There is no possibility of overlooking any important object.	for					
		5. There is no possibility of overlooking any measurement as plotting is done in the field.	each					
		6. Irregular objects may be represented accurately.						
		7. It is suitable in magnetic areas.						
		8. The map can be prepared easily, and does not require any great skill.						
		9. Errors in measurement and plotting can be detected by check lines.						
		10. Inaccessible points can be easily located by intersection.						
		Disadvantages:-						
		1. The plane table is not suitable for accurate work as the fitting arrangement is not	Any four					
		perfect.	1/2 M					
		2. Plane table surveying is not suitable in wet climate, in the rainy season, on foggy	for					
		mornings and in windy weather.	each					
		3. The number of accessories required in such survey is large, and they are likely to be						
		lost.						
		4. The instrument is very heavy and difficult to carry.						
		5. The map cannot be re-plotted to a different scale as there is no field book.						
Q.4	(b)	Find the length and bearing of line AB. If two co- ordinates A & B as below:						
		Point Co-ordinates						
		A 970.50, 850.40						
		B 1200.40, 602.20						
	Ans:	Latitude of line AB = L = 1200.40 – 970.50						
		= 229.90 (+)						
		Departure of line AB = D = 602.20 - 850.40						
		= -248.20 (-)						

			(ISO/IEC -	2/001 -	2013 Certif	ieu)				
		As latitude is +ve	e and departure	e is –v	e, the line	lies in IV	quad	rant.		
		Bearing of line A	۱R							
		$tan\theta = D/L = 248$								
		θ =47°11′31.24′		24" V	V					
		WCB of line AB	= 360°0′0′′– 47′	°11′31	.24"					
		=	= 31 2°4 8 ′28.76	, "						01 M
		Length of line A	$\mathbf{B} = \mathbf{I} = \mathbf{V}(L)^2 + (D$)2						
			= 1/	(229.9	0) ² +(-248	3 20) ²				01 M
			I = 338.3	•	0) 1(240	5.20)				01 101
Q.4	(c)	Following are th			ures for c	losed tra	verse	ABCDE. Comi	oute the missing	
	(- /	length & WCB o								
		Line	AB		ВС	CD		DE	EA	
		Length	194.1	20	01.20	164.4	40	172.60	?	
		WCB	85 ⁰ 30 [']	1!	5 ⁰ 30 [′]	285 ⁰	30 [′]	195° 30′	,	
	Ans:	Let L=Latitude, [1					_
		Line	Length (m)	Bea	ring	L	= $l \cos \theta$	$L = I \sin \theta$	
		AB	194.1		85 ⁰	'30 [′]		15.22	193.501	
		ВС	201.20	201.20		15 ⁰ 30		193.882	53.768	
		CD	164.40			⁰ 30 [′]		43.934	-158.421	
		DE	172.6		1	⁰ 30 [′]	-	166.323	-46.125	
		EA				?		L	D	
	For a closed traverse, $\Sigma L=0$ $\therefore +15.22+193.882+43.934-166.323+L=0$ $\therefore L=-86.713$ (-) $\Sigma D=0$ $\therefore +193.501+53.768-158.421-46.125+D=0$ $\therefore D=-42.723$ (-) As latitude is -ve and departure is -ve, the line lies in III quadrant. Length of line DA = $I=V(L)^2+(D)^2$ $=V(-86.713)^2+(-42.723)^2$ I=96.666 m Bearing of line DA $tan\theta=D/L=42.723/86.713$ $\theta=26^\circ13'45.14''=8 26^\circ13'45.14''$ W							01 M 01 M 01 M		
Q.4	(d)	Following obser	vation were m	ade b	y tacheon	neter:				
		Dista	nce		25	m			50 m	\neg
		Stadia I	Reaing		1.900,1.6	55 <u>,</u> 1.410)	2.220,	1.725, 1.230	
	Ans:	Find the constan	nts of tacheom	eter.						-
		Case 1:								
		$D_1 = f/i \times S_1 + (f - f)$	+ c)							

					(ISO/IEC - 2									
		25 = f/	/ i x (1.	900 – 1.	410) + (f + c	c)	(1	1)						01 M
		D - f/	'ivc	. /f . c \										
		$D_2 = f/i \times S_2 + (f + c)$ $50 = f/i \times (2.220 - 1.230) + (f + c)$ (2)										01 M		
		30 – 17	1 X (2	220 – 1.	230) + (1 + (~ J	(∠	,						OT IVI
		Solvin	g equa	tion 1 &	2 simultan	eously								
		f/i = 5				•								02 M
) =0.50											
Q.4	(e)	Calcul	ate the	e ordina	tes at 25 m	interv	al to	set out a	circu	ılar cı	urve havin	ig a long c	hord of	
					ne of 10 m.									
	Ans:		: L = 30	•										
			al x = 2	•										
			sine =	_										
			_	_	fset of the c	curve at	t mic	ddle of the	e long	g choi	rd = 00			
				$+(L/2)^2$	مرا ا مرسده	aath af	lone	- chard						02 M
				(300/2)	curve, L=Ler ²	igtii oi	IOHE	g choru						UZ IVI
		R = 11		(300/2)										
				s at dist	ance x from	the m	idpo	oint may b	e cal	culate	ed by			
				² - (R - (паро		e can	caract	-			
				•	terval are:									
		025 =	√ 1130	² -(25) ² -	(1130 - 10) = 9.70	0 m							
		050 =	√1130	² -(50) ² -	(1130 - 10) = 8.89	9 m							
					(1130 - 10									02 M
) ² - (1130 - 1	-								
) ² - (1130 - 1									
				•) ² - (1130 - 1	-).00 ı	m Hence	OK					(4.0)
Q.5	(-)		•		f the follow		£ - 11 -		1:		.l			(12)
Q.5	(a)				ent co-ordin AB					es of t	ne travers	DA		
			th (m		35		850			408		828		
		Beari	•	,	.80° 20′		90°20′ 357°			365 ⁰				
		Dear	1118	-	20		JU 2		•	337		303		
	Ans:											6	l	
		Lina	Leng	Dooring	D D	Cons.	. Co-c	ordinates		Corre	ection		d cons. Co- nates	
		Line	th (m)	Bearing	R.B								1	
			(,			Lat		Dep	Li	at	Dep	Lat	Dep	
		AB	335	180 ⁰ 20′	S0 ⁰ 20'W	-334.9	00	-1.94	122	.478	124.377	-458.468	-126.317	
			333	180 20	30 20 W	-334.3	99	-1.54	123	.470	124.377	-436.406	-120.517	
		ВС	850	90 ⁰ 20′	S89 ⁰ 40'E	-4.94		849.98		.303	315.583	-318.243	534.397	
		CD	408	357 ⁰	N3 ⁰ 00'W	407.4		21.35		.385	151.480	257.055	-172.830	
		DA TOT	828	365 ⁰	N5 ⁰ 00'E	824.8		72.165		.194	307.415	519.656	-235.250	
		AL	2421			892.360 898.855 -892.360 -898.855 0 0								
							•							
			Calculation of reduced bearings:											
i		1	ne AB, RB = $180^{\circ}20' - 180^{\circ} = S0^{\circ}20'W$											

	(ISO/IEC - 2/001 - 2013 Certified)		
	Line BC, RB = 180° - 90°40′ = S89°40′E		
	Line CD, RB = $360^{\circ} - 357^{\circ} = N3^{\circ}00'W$		
	Line DA, RB = $365^{\circ} - 360^{\circ} = N5^{\circ}00'E$		
	Calculations of latitudes :		
	Latitude = Lcosθ		
	Line AB = $335 \times \cos(0^{\circ}20') = -334.99$		
	Line BC = $850 \times \cos(89^{\circ}40') = -4.94$		
	Line CD = $408 \times \cos(3^{0}00') = 407.44$		
	Line DA = $828 \times \cos(5^{\circ}0') = 824.85$		
	Error in sum of latitudes = 892.360		
	Correction will have -ve sign		
			02 M
	Calculation of Departures:		
	departure = Lsinθ		
	Line AB= $335x \sin(0^{0}20') = -1.94$		
	Line BC = $850x \sin(89^0 40') = 849.98$		
	Line CD = $408x \sin(3^0) = -21.35$		
	Line DA= 828x sin(5 ⁰) = 72.165		
	5 i		
	Error in sum of departures = 898.855		
	Correction will have -ve sign		02 M
	Bowditch's Rule:		02 101
	Correction to latitude or departure of any side		
	= total error in latitude or departure x (length of that	side/ perimeter of traverse)	
	Perimeter of traverse = 335 + 850 + 408 + 828 = 2421 n	n	
	Corrections to latitudes: Corr	rected latitudes:	
	Line AB = 892.360x335/2421 = 123.478 Line	AB= - 334.99-123.478= -458.468	
	Line BC = 892.360x 850/2421 = 313.303 Line	e BC= - 4.94-313.303= -318.243	
	Line CD = 892.360x408/2421 = 150.385 Line	e CD= 407.44-150.385= 257.055	
	Line DA = 892.360x 828/2421 = 305.194 Line	e DA= 824.85-305.194 = 519.656	
	Corrections to departure: Co	rrected departures:	
	·	ne AB= -1.94- 124.377 = -126.317	
	,	ne BC=849.98 -315.583 = 534.397	02 M
	·	ne CD = -21.35-151.480 = -172.830	
	·	ne DA = 72.165-307.415 = -235.250	
	Note: Data given seems to be incorrect, especially be		
	corrections in Latitude and Departure are absurd. He	nce just after calculation of Latitudes	
	and Departures of all line, full marks shall be given.		
Q.5 (b)	Explain Bowditch Rule as applicable in a theodolite tr		
Ans:	1) The rule, also termed as the compass rule, is used to	o balance the traverse when the	
	angular and linear measurements are equally precise.		

2) By this rule, the total error in latitude and in departure is distributed in proportion to the lengths of the sides.	
3) This rule is most commonly used in traverse adjustment.	06 M
Correction to latitude	
= total error in latitude x (length of that side/ perimeter of traverse).	
4) Correction to departure	
= total error in departure x (length of that side/ perimeter of traverse)	
5) If error is negative then correction is positive and vice versa.	
6) After applying correction summation all latitudes and departures must be zero.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Q.5	(c)	.								
		were obtained on verti	•		T	ı.				
		Inst. Stn.	Staff Stn.	Vertical angle	Staff Reading					
		Р	BM	-12 ⁰ 42′	0.220, 1.000,1.780					
		Р	Q	+9 ⁰ 36′	0.415, 1.240, 2.065					
			the constant of tached	ometer was 100. Find	the horizontal distance					
	A	PQ and RL of Q.								
	Ans:	Given: Anallatic lens are	e provided, (f+c) = 0, f/i	= 100, B.M. RL. = 400.	.000 m	02.14				
		Part I) Distance PQ				02 M				
		θ = 9º36' (Elevation)								
		S = staff intercept = 2.0		_						
		Horizontal distance PQ		sθ						
		$= 100 (1.650) \cos^2 9^{\circ} 36$								
		Horizontal distance PQ	= 160.411 m							
		Part II) RL of station Q								
		V1= Vertical distance be	etween horizontal collin	nation and axial readi	ng at BM	01 M				
		$V1 = f/i (S) x sin2(\theta/2)$								
		$\theta = -12942'$ (Depression)							
		h _{bm} = 1.0								
		$S_{BM} = 1.780 - 0.220 = 1.$	_							
		$V_{BM} = 100 \times 1.560 \times (\sin x)$	2 x 12 ⁰ 42 [′] /2)							
		V _{BM} = 33.457 m								
		RL of instrument station	$h = RL of BM + h_{BM} + V_{BI}$	M						
			= 400 + 1.0 + 33.46			02 M				
			= 434.46 m							
		$V_Q = 100 x (1.65) x sin 2$	2 x 9 ⁰ 36'/ 2							
		V _Q = 27.131 m								
		$R.L$ of Q = RL of instrument station + V_Q - h_Q								
		= 434.46 + 27.3	131 – 1.240			01 M				
		= 460.351 m		The state of the s						
				The state of the s	- The					
				200211	9 19					
			1200	9036						
			NOW E		and the median					
				P	solved to the					
			h BN		A S. Haston Constant See					
			B.M							
Q.6		Attempt any two of the	e following:			(12)				
Q.6	(a)	Write short notes on :								
		(i) Uses of digital level								
		(ii) Salient features of	total station							
	Ans:	(i)Uses of digital level.	i							
		1) Digital level can be us		interface with compu	ıter					
		2) It is also used for day	_	,		01 M				
		3) It can be used for det	-	of earth work with inte	erfacing of software.	each				

		4) It is used to prepare a layout map for water supply sanitary or drainage scheme.	(any
		5) To prepare a L section and cross section of a project (Roads,	three)
		Irrigation canal etc.) In order to determine the volume of earth work.	
		6) To determine altitude of different important points.	
		7) To prepare a counter map for fixing sights for a different structure.	
		77 To prepare a counter map for fixing sights for a different structure.	
		(ii)Salient features of Total Station.	
		1 High accuracy.	
		2 Long measuring range.	
		3 Large internal memory.	
		4 It is water resistance and dust proof.	01 M
		5 Easy access to any desired programme and mode of selection.	each
		6 Try axis compensation.	(any
		7 Easy to read arrangement.	three)
		8 Automatic atmospheric correction.	
		9 Guide message arrangement.	
		10 Higher distance resolution.	
		11 Two speed tangent movement.	
		12 Detachable tribach facility.	
		13 Eighteen different programmes (modes of measurements).	
Q.6	(b)	Explain procedure of measuring distance using EDM.	
	Ans:	Let distance AB is to be measured.	
		 Set EDM at station A. Touch ON/OFF switch. Display panel will give reading 0.0. 	
		2. Hold the reflector at B	06 M
		3. Telescope of EDM sighted towards B with cross hair at center of reflector.	
		4. Press Range or Enter switch and in few seconds, distance will be displayed. Distances	
		displayed will be horizontal distance and sloping distance between A and B, also	
		elevation difference between A and B.	
Q.6	(c)	Explain the application of remote sensing in the following area:	
		(i) Land use	
		(ii) Disaster management	
	_	(iii) Environment	02.14
	Ans:	i) Land use or Land cover analysis: Remote sensing techniques are useful for taking images	02 M
		of large area quickly, and it is cheaper than ground surveying.	
		ii) Disaster management: In case of earthquakes, landslides, volcanic eruptions and floods	02.14
		and natural hazards, remote sensing can prevent and minimize the damage by analysing the	02 M
		geological formation of the area, thereby identifying the risk prone areas. It is possible to	
		give specific warning of certain natural hazards and assess the damage caused and thereby	
		help in the rescue and aid operations.	
		iii) Environment:	
		Remote sensing is useful in weather forecasting.	02.54
		May aspects of ocean becoming better known through remote sensing techniques.	02 M
		 Pollution in the form of oil spills and thermal plumes can easily be monitored. 	
		 Study about Ozone layer depletion and global warming can be possible by using 	
		remote sensors.	