

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code: 22233

Page 1 of 20

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page **2** of **20**

Q No.	Answer	marks
1	Any five	10
1-a	Types of thermal insulation:	
	Thermal insulations are classified as –	
	1) Organic insulations – e.g. wool (sheep), cork, cellulose, wood fiber,	1
	flax, cotton, hemp, phenolic foam, urea-formaldehyde foam,	
	polyurethane foam, expanded polystyrene foam (thermocol), extruded	
	polystyrene foam, polyethylene foam etc.	
	2) Inorganic insulations – e.g. aerogel , asbestos , glass wool , slag wool ,	1
	rock wool, gypsum powder, foamed glass, expanded perlite,	
	refractory bricks, ceramic wool (fiber), calcium silicate, vermiculat etc	
1-b	Biomaterials:	2
	A biomaterial is any material that has been engineered to interact with	
	biological systems for a medical purpose (a therapeutic or a diagnostic	
	one).	
	Material that come in contact with tissues, blood and biological fluids	
	and intended for use for therapeutic, prosthetic and diagnostic	
	applications without affecting the living organism and its components.	
1-c	Thermal conductivity of engineering material:	2
	Thermal conductivity of engineering material is the property of a	
	material that determines the rate at which it can transfer heat.	
	OR	
	It is a measure of the ability of a material to transfer heat.	
	Thermal conductivity of material is the property to conduct heat.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code: 22233

Page 3 of 20

Thermal properties of engineering materials:(any 2)	1 mark
	1 mark
1 3 / 1/2 2 4	
1. Melting point	each
2. Specific heat	
3. Heat capacity (specific heat capacity)	
4. Thermal expansion	
5. Thermal conductivity	
6. Thermal stability	
7. Thermal shock resistance	
8. Heat resistance/thermal resistance	
Engineering applications of ceramics: (any 2)	1 mark
Ans: Ceramics are used for following engineering applications,	each
1. Cutting io and dies	
2. Molten metal filters	
3. Bearings	
4. Sealing rings	
5. Bushes	
6. Fuel injection components	
7. Spark plug insulators	
8. Disk brakes and clutches	
9. Jet turbine blades	
10. Fuel cells	
11. Body armour	
12. Tank power trains	
13. Gas burner nozzles	
14. Catalytic converters	
	3. Heat capacity (specific heat capacity) 4. Thermal expansion 5. Thermal conductivity 6. Thermal stability 7. Thermal shock resistance 8. Heat resistance/thermal resistance Engineering applications of ceramics: (any 2) Ans: Ceramics are used for following engineering applications, 1. Cutting io and dies 2. Molten metal filters 3. Bearings 4. Sealing rings 5. Bushes 6. Fuel injection components 7. Spark plug insulators 8. Disk brakes and clutches 9. Jet turbine blades 10. Fuel cells 11. Body armour 12. Tank power trains 13. Gas burner nozzles

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject T	Γitle: Ch	emistry of Engineering materials	Subject code:	22233	Pag	ge 4 of 20
		15. Catalyst supports				
		16. Catalyst				
		17. Heat exchangers				
		18. Reformers				
		19. Kiln linings				
		20. Crucibles for glass making				
		21. Firebricks for furnace and ovens				
		22. Cylinder liners				
		23. Capacitors				
		24. Resistance heating elements				
		25. Flow control valves				
		26. Light emitting diodes, laser diodes	S			
		27. Optical communication cables				
		28. Heat sink for electronic parts				
		29. Filters				
		30. Rotors and gears				
		31. Electrode materials				
		32. Precise instrument parts				
		33. Grinding media				
		34. Ballistic armour				
		35. Bullet proof vests				
		36. Thread processing nozzles, oiling	nozzles, rollers and twis	ster parts.		
	1-f	Example of thermosetting polymer with	h its structure(any 1)		1 mark	
		Ans:			for name	
		1. Nylon			and 1	
		2. Nylon-6			mark for	
		3. Nylon-66			structure	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page **5** of **20**

$$\begin{array}{|c|c|c|}\hline \begin{pmatrix} \mathbf{H} & \mathbf{H} & \mathbf{O} & \mathbf{O} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{N} - (\mathbf{C}\mathbf{H}_2)_6 - \mathbf{N} - \mathbf{C} - (\mathbf{C}\mathbf{H}_2)_4 - \mathbf{C} \end{pmatrix}_{n} \end{array}$$

Nylon 66

$$\frac{\begin{pmatrix} \mathbf{H} & \mathbf{O} \\ \mathbf{I} & \| \\ \mathbf{N} - (\mathbf{CH}_2)_5 - \mathbf{C} \end{pmatrix}_n}{\sqrt{\mathbf{H}_2 + \mathbf{I}_2}}$$

Nylon 6

4. Silicon rubber

5. Urea formaldehyde

$$\left\{ \begin{array}{c} I \\ CH_2 - N - CO - N - CH_2 \end{array} \right\}_{n}$$

6. Phenol formaldehyde

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

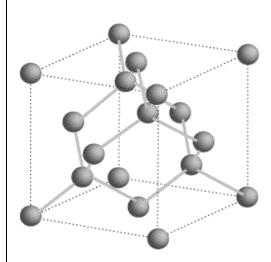
SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page **6** of **20**


Phenol formaldehyde resin

7. Polyester

Poly(bisphenol-A-terephthalate)

Poly(4-hydroxybenzoate)

8. Silicones

1-g **Types of steels:**

Ans: The types of carbon steels/plain carbon steels or simply steels based on %

2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials 22233 Subject code: Page **7** of **20** of carbon content are -1. Low carbon steel : 0.05 - 0.3 %2. Medium carbon steel: 0.3 - 0.5 %3. High carbon steel : 0.5 - 2%2 Any three **12** 2-a Differentiate between Nanostructure and Microstructure. 1 mark each Nanostructure Microstructure Nanostructures are structures that Microstructures are structures that range between 1nm and 100nm are revealed by a microscope of 25x (1nm=10⁻⁹m) in at least one or greater magnification. dimension. A nanostructure is a structure of A microstructure has very small size intermediate size between than other structures. microstructures and molecular structures. Microstructures are one dimension in Nanostructures are one dimension, two dimension and three dimension scale. in scale. The nanostructure of a material The microstructure of a material influences physical properties of the influences physical properties of the material such as size, shape, material such as strength, toughness specific surface area, aspect ratio , wear resistance etc. etc. 2-b **Definition:** i) Melting point – 1

The melting point of a material is the temperature at which it changes

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ıbject Title: Che	emistry of Engineering materials	Subject code:	22233	Page 8 of 20
	state from solid to liquid at no	rmal atmospheric pressure.		
	• The temperature at which a se	olid material melts to beco	ome a liquid at	
	normal atmospheric pressure.			
	(ii) Specific heat –			
	• The specific heat of a material	is the amount of heat energ	gy per unit	1
	mass required to raise the temp	perature of the material by o	one degree	
	Celsius.			
	(iii) Heat capacity –			
	Heat capacity is the quantity of	f heat energy needed to rais	e the	
	temperature of a specific mater	rial by one degree Celsius.		1
	Heat capacity is the ratio of the	e quantity of heat energy tra	ansferred to a	
	material and the resultant temp	perature rise.		
	(iv) Dielectric constant –			
	• The dielectric constant is the	he ratio of the permittivity	of a material to	
	the permittivity of free spa	ce.		1
	• It is an amount measuring	the ability of a material to	store electrical	
	in an electric field.	•		
2-c	Definition:			
	Impact strength –			
	• The resistance of a mater	ial to fracture by a blow	, expressed in	2
	terms of the amount of ene	rgy absorbed before fractur	re.	
	• The impact strength is the	ability of a material to ab	sorb shock and	
	impact energy without brea	aking /fracture.		
	Compressive strength –			
	• The compressive strength	n is the ability of a ma	terial to resist	2
	squeezing (compressive) lo	oad without fracture.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code: 22233

Page 9 of 20

	It is the maximum compressive stress that a material can sustain	
	without fracture/failure, under gradually applied load.	
2-d	Corrosion.	
	Definition -	2
	Corrosion is the gradual deterioration or destruction of materials	
	(usually metals and alloys) by chemical or electrochemical reactions	
	with its environment.	
	Corrosion is defined as the gradual deterioration or destruction of a	
	metal by chemical or electrochemical reactions with its	
	environment.	
	Any process of deterioration and consequent loss of a solid metallic	
	material through undesired chemical or electrochemical attack by its	
	environment starting at the surface.	
	Factors affecting rate of corrosion –	
	The factors affecting rate of corrosion are:	½ mark
	A) Nature of the material (metal dependent factors) -	each for
	1) Position of the metal in the electrochemical or galvanic series	any 4
	2) Purity of the metal	
	3) Surface of the metal	
	4) Relative area of cathodic and anodic part (anodeto cathode area	
	ratio)	
	5) Nature of the oxide film	
	6) Solubility of the corrosion product	
	7) Physical state of the metal	
	8) Volatility of the corrosion product	
	B) Nature of the environment (environment dependent factors) –	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject T	Γitle: Ch	emistry of Engineering materials	Subject code:	22233	Pag	ge 10 of 20
		1) Temperature of the e	environment			
		2) pH of the environme	ent			
	3) Humidity of the environment/presence of the moisture in the					
		environment				
		4) Presence of impuritie	es in the environment			
		5) Amount of oxygen in	n the environment			
		6) Nature of anions and	cations present in the environme	ent		
	7) Presence of suspended particles in the environment					
	2-е	Definition:				
		1) Ductility				
		Ductility is the ability of	of a material to be deformed plan	stically without	1.5	
		fracture under tensile str	ength.			
	Ductility is the property of material by which materials can be drawn					
	out into fine wire without fracture.					
		2) Plasticity				
		• The ability of a materia	l to deform under load and retain	n its new shape	1	
		when the load is remove	ed.			
		3) Hardness strength				
		• It is the resistance of a m	naterial to plastic deformation-pe	netration,	1.5	
		scratching, abrasion or o	cutting.			
	The ability of a material to resist wear or abrasion and resist penetration.					
	3 Any three				12	
	3-a Differentiate between Thermosetting and Thermoplastic polymers:			1 mark		
		Thermosetting	Thermoplastic		each for	
		Polymers which once mould	Polymers whose shape can		any 4	
		/shaped do not soften when	be changed on application of			
	1	11	i l		1	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code: 22233

Page 11 of 20

itic. Ci	inclinistry of Engineering materials	Subject code.	22233	1 48
	heated and thus cannot be	heat are k/as thermoplastic		
	reshaped	polymers		
	It can be heated and shaped	These are soften by heating,		
	once.	shaped when hot, harden		
		when cooled, reshaped when		
		heated again.		
	It can be decamped when	These are soften for no. of		
	reheated. No plasticity	times on heating without		
		change in their properties.		
	e.g. epoxy resins, urea	e.g. polyethylene,		
	formaldehyde etc	polypropylene etc		
	They have 3 dimensional	They have long chain linear		
	cross linked structure	structure		
	Produced by condensation	Produced by addition		
	polymerization process	polymerization process		
	High molecular weight	Low molecular weight		
	These are hard, more brittle	These are soft, less brittle		
	and strong	and weak		
	Monomer used in this	Monomer used in this		
	polymer is tri, tetra or poly	polymer bi functional.		
	functional.			
3-b	Classification of metals:			
	Metals:			1
	1. Ferrous. example: cast i	ron, stainless steel		
	2. Non ferrous. example:	Al and its alloys, Cu and its alloys	S	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

ect Title: Cl	nemistry of Engineering materials	Subject code:	22233	Pag	ge 12 of 20
	Classification of non metals:				
	1. Plastic			1	
	2. Rubber				
	3. Glass				
	4. Ceramics				
	e.g. wood, asbestoses etc.				
	Uses of metals:				
	metals are used for MOC in steam boil	iler and steam pipeline		½ mark	
	it is used in storage and transporting			each for	
	it used for distillation column, storage	e tank, pump, pipe etc.		any 2	
	Uses of non metals:				
	non-metals are used for gaskets.			½ mark	
	It is used for seals, bushes, glands etc	. .		each for	
	Used for vessel and reaction kettle lin	ing. Etc.		any 2	
3-c	Corrosion in alkaline medium:				
	Cathodic reaction is : absorption of ox	kygen		4	
	$O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$				
	Corrosion is less in alkaline medium				
	Example of alkaline medium is NaCl	solution,			
	e.g.				
	a piece of iron is immersed in sodium	n chloride solution			
	$Fe -> Fe^{2+} + 2e^{-}$				
	NaCl -> Na + Cl				
	$^{1/2}O_{2} + H_{2}O + 2e^{-} > 2OH^{-}$				
	Na ⁺ + OH ⁻ -> NaOH				
	$Fe^{2+} + 2Cl^{-} \rightarrow FeCl_{2}$				
3-d	Composition of SS-304:				
				1	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

ubject Title: Cl	nemistry of Engineering materials Subject code: 2223	Page 13 of 2
	18 – 20 % Cr, 8 – 10.5 % Ni, 0.08 % max C, small amount of Mn, Si, P,S	and 2
	the balance is Fe.	
	Properties:	
	Density= 8000 Kg/ cu. m	2
	MP.: 1450 deg. C	
	Thermal conductivity: 16.2 W/(mK)	
	Good weld ability	
	Good heat resistance	
	Good drawing and forming properties	
4	Any three	12
4-a	Crystal structure of glass by Bragg's law: The general relationship between the wavelength of the incident x ray, ang	le of
	incidence and spacing between the crystal planes of atoms is known as	
	Braggg's law, expressed mathematically as	
	$2d \sin \theta = n\lambda$	
	Where n is an integer, λ is the wavelength of the incident x ray, d is the	
	interplanar spacing of the crystal or distance between the layers of atoms a	nd θ
	is the angle of incidence.	
	P 2 R Crystal lattice planes of storms (Atomic scale)	
	1. Consider that the x ray of wavelength λ is incident on a crystal at an angle θ . The incident rays AB and PQ after reflection from the cry	

(Autonomous)

(ISO/IEC-27001-2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page **14** of **20**

lattice planes Y and Z travel along BC and QR

- 2. Let the spacing between the crystal lattice planes of atoms be d
- Draw perpendiculars BD and BE from point B on PQ and Qr respectively. BD and BE are the perpendiculars from point B on lines PQ and PR respectively.
- 4. Thus the path difference between the two waves ABC and PQR is DQ + QE. The path of the wave PQR is longer than the path of the wave ABC by DQ+QE.

In the \triangle DBQ, $\sin \theta = DQ/BQ$

Therefore DQ = BQ $\sin \theta$

In the \triangle EBQ, $\sin \theta = QE/BQ$

Therefore $QE = BQ \sin \theta$

Path difference between two rays = DQ+QE

= BQ
$$\sin \theta$$
 + BQ $\sin \theta$ = 2 BQ $\sin \theta$

=
$$2d \sin \theta \text{ since BQ} = d$$

If the path difference $2d \sin \theta$ is equal to the integral multiple of wave length of x ray, i.e. $n\lambda$, then constructive interference will occur between the reflected rays and they will reinforce each other and consequently the intensity of reflected beam is maximum.

Thus, for constructive interference to occur:

$$2d \sin \theta = n\lambda$$

This is known as Bragg's law.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page 15 of 20

THE. CH	emistry of Engineering materials	Subject code:	22233	Pag
	Bragg's Law $n\lambda = 2dsin\theta$ 2λ Bragg's law path difference			
4-b	Chemical reactivity of iron with air	:		4
	Chemical reactivity is the ability of a materials.	material to combine with the	other	
	Chemical reactivity of iron / mild stee	l (MS) with air		
	MS react with air to form iron oxide,	Fe ₂ O ₃ . MS react with oxygen	n from air in	
	the presence of moisture or dissolved	oxygen from water to produc	e hydrated	
	iron oxide Fe ₂ O ₃ .xH ₂ O (called brown	rust). The oxide film is form	ed is non-	
	protective and it flake-off from the sur	rface thereby exposing the fre	sh metal	
	surface for further reaction with air an	d water.		
4-c	$Q = m \times Cp \times (T_2 - T_1)$			2
	$= 50g \times 4.18 \text{ J/gK} \times (373 - 273) \text{ K}$			
	= 20900 j oules			2
4-d	Classification of ceramics:			1 mark
	1.Glasses:			each for
	Glasses			any 4
	Ceramic glasses			with one
	2.Natural ceramics:			example
	Bones			
	Rocks and minerals			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials 22233 Subject code: Page **16** of **20** 3.Traditional ceramics: White wares Structural clay products Bricks and tiles Refractories Abrasives Cements **4.**Advanced structural ceramics: Bio ceramics Automotive ceramics Nuclear ceramics Wear resistance ceramics **5.**Functional ceramics: Optical ceramics Conductive ceramics Capacitors, dielectric, piezoelectric ceramics Electronic substrate, package ceramics Magnetic ceramics 5 **12** Any two 5-a **Addition polymerization Condensation** 1 mark polymerization each for 5 points 1)the polymerization reaction Many monomers molecules 1 mark involves the joining of join together to form the for unsaturated monomers by polymer with the loss or example. breaking of bonds in a chain elimination of a small by products such as water or like manner without loss of

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

22233 Subject Title: Chemistry of Engineering materials Subject code: Page 17 of 20 methanol is k/as any by products is k/as addition polymerization. condensation polymerization 2)monomers must have at Monomers must have at least least double or triple two dis similar of different functional groups. 3)monomers add to produce Monomers are condensed to polymers produce polymers 4)no by product is form By product is formed such as water or methanol It produces thermosetting 5)it produces thermoplastics polymers Example: pvc(poly vinyl Example: formaldehyde chloride) 5-b **Industrial importance of:** Silicon carbide: ½ mark **i**) 1. It is used in car brakes and clutches. each 2. Ceramic plates in bulletproof vests 3. Bearings 4. Semiconductors wafer processing equipment 5. Light emitting diode 6. Cutting tools and burner nozzles. ii) Aluminium oxide: 1. Bearing liners and seals 3 2. Cutting tools 3. Artificial bones and teeth 4. Engine and turbine parts

5. Thermometry sensors

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page 18 of 20

Γitle: Cl	hemistry of Engineering materials Subject code: 22233	Pag
5-с	Classification of alloy steels	
	Based on its composition:	2
	1) Simple alloy steels:	
	It is the alloy steel containing one alloying element eg nickel steel	
	2) Quaternary alloy steel:	
	It is the alloy steel containing two alloying elements eg chromium and	2
	vanadium	
	3) Complex alloy steel:	
	It is the alloy steel containing more than two alloying elements eg. High	2
	speed tool steel	
6	Any two	12
6-a	Prevention and control of corrosion:	1 mark
	1.Material selection and choice of materials	each for
	2.Proper design and fabrication of components	any 6
	3. Use of high purity metals: The impurities present in a metal cause	points
	heterogeneity and form tiny electrochemical cells with rest of the metal. Due to	
	this, metal undergoes corrosion at the region where impurities are present. Pure	
	metal does not corrode.	
	4.Specific heat treatment	
	5.Modification of corrosion environment	
	6. Use of alloying: Corrosion resistance of many metals can be increased by	
	alloying them with suitable alloying elements.	
	7. Use of inhibitors: Inhibitors are organic chemicals which are added in small	
	amounts to a corrosive medium in order to reduce its corrosive effect. Usually	
	they form and maintain a protective film on the metal surface and thus acts as a	
	barrier for further corrosion.	
	8.Cathodic protection (electrochemical protection): In this, the metal is forced	
		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code:

22233

Page 19 of 20

Γitle: Cl	hemistry of	Engineering materials	Subject code:	22233	Pag	
	to behave	e like a cathode thus protection	ng it from corrosion. This	is achieved by		
	supplying	g electrons to the metal surfa	ce to be protected. Addition	on of electrons		
	to the me	to the metal suppresses its dissolution into metal ions. Different types are:				
	Sacri	ficial anodic method				
	Impro	essed current method				
	9.Use of	protective surface coatings: 1	Protective coatings provide	e a continuous		
	physical	barrier between the surface to	o be protected and the env	ironment.These		
	are classi	fied as:				
	Metal	lic coatings				
	Inorga	anic coatings				
		nic coatings				
6-b	Effect on					
	i)	Copper: it improves the resis	tance to atmospheric corrosi	on. It strengthens	2	
		steel. It may be added to imp	rove formability. It improves	s pains adhesion		
	ii)	Phosphorus: it is considered	as the undesired impuries in	steel because of	2	
		its embrittling effect. It impre	oves strength but at the same	time decrease		
		the ductility .it is upto 0.04 %	by weight.			
	iii)	Manganese:it increase tensile	e strength, abrasion resistanc	e, hardenability	2	
		and toughness . it decrease w	eldability.			
6-c	Claddin	g mechanism:				
	Cladding	is the bonding together of di	issimilar metals. It is differ	rent from		
	fusion w	elding or gluing as a method	to fasten the metals togeth	er. Cladding is	2	
	often ach	ieved by extruding two meta	ls through a die as well			
	as pressi	ng or rolling sheets together u	under high pressure.			
	laser clac	lding is a method of depositi	ing material by which a po	wdered or wire		
	feedstocl	material is melted and conse	olidated by use of a laser i	n order to coat		
	part of a	substrate or fabricate a near-	net shape part .			
<u> </u>						

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemistry of Engineering materials

Subject code: 22233

Page 20 of 20

It is often used to improve mechanical properties or increase corrosion resistance, repair worn out parts and fabricate metal matrix composites.

Process:

The powder used in laser cladding is normally of a metallic nature, and is injected into the system by either coaxial or lateral nozzles. The interaction of the metallic powder stream and the laser causes melting to occur, and is known as the melt pool. This is deposited onto a substrate; moving the substrate allows the melt pool to solidify and thus produces a track of solid metal. This is the most common technique, however some processes involve moving the laser/nozzle assembly over a stationary substrate to produce solidified tracks..

Advantages

- Best technique for coating any shape.
- Particular dispositions for repairing parts .
- Most suited technique for graded material application.
- Well adapted for near-net-shape manufacturing.
- Low dilution between track and substrate
- Low deformation of the substrate and small heat affected zone.
- High cooling rate.
- A lot of material flexibility (metal, ceramic, even polymer).
- Built part is free of crack and porosity.
- Compact technology.

1

3