Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marki ng Schem e
		SECTION - I	
1	(A)	Attempt any SIX of the following:	12- Total Marks
	(a)	Define EMF and state its unit.	2M
	Ans:	Electromotive force(EMF): A potential difference generated by a source of electrical energy across its terminals which tends to produce an electric current in a circuit is called electromotive force. Unit of EMF is Volt	1 mark for definit ion 1 mark for unit

Subject Name: Electrical and Electronics Technology

<u>Model Answer</u> Subject Code:

22232

(b)	Define (i) Permeability (ii) Reluctance.		
Ans:	 Permeability: The capability of the magnetic material to conduct the magnetic flux is known as permeability (OR) It is defined as ratio of magnetic flux density B in a medium to the magnetic flux intensity H at the same location in the medium. Reluctance: It is defined as the property of a material due to which it opposes the creation of magnetic flux in it. 	1 mark for each definit ion	
(c)	Write the relation between RMS value and Average value.	2M	
Ans:	The ratio of RMS value to average value is called the form factor of an alternating quantity. Form factor $K_F = \frac{rms \ value}{average \ value}$	2 Marks	
	For sinusoidal voltage and current, Form factor $K_F = \frac{rms \ value}{average \ value} = \frac{0.707 \ x \ Vm}{0.637 \ x \ Vm} = 1.11$		
	Or Form factor $K_F = \frac{rms \ value}{average \ value} = \frac{0.707 \ x \ Im}{0.637 \ x \ Im} = 1.11$		
	average value 0.637 x Im		
(d)	State the working principle of transformer.	2M	
(d) Ans:		2M 2	
	State the working principle of transformer.	2	
	State the working principle of transformer. Working principle of transformer :	2	
	State the working principle of transformer. Working principle of transformer : Transformer works on the principle of mutual electromagnetic induction. When AC	2	
	State the working principle of transformer. Working principle of transformer : Transformer works on the principle of mutual electromagnetic induction. When AC voltage is applied to the primary winding of a transformer it causes ac current to flow	2	
	State the working principle of transformer. Working principle of transformer : Transformer works on the principle of mutual electromagnetic induction. When AC voltage is applied to the primary winding of a transformer it causes ac current to flow through primary winding which in turn produces alternating flux in the core. This changing		

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

e)	The frequency of an a.c quantity is 60Hz. Find the time period.	2M
Ans:	F=60 Hz	2
		marks
	Time period T = $\frac{1}{f}$	
	$T = \frac{1}{60} = 0.016 \text{ sec}$	
f)	Define FHP motor and list various types.	2M
Ans:	Any motor rated less than one horse power may be called as fractional horse power	1 mark
	motors(FHP)	mark
	various types of FHP motors are:	
	1.Split phase induction motor	
	2. Capacitor start induction motor	1 mark
	3. Capacitor start capacitor run induction motor	
	4. Shaded pole induction motor.	
g)	Define transformation ratio of a transformer.	2M
Ans:	Transformation Ratio (K) of a transformer: It is the ratio of secondary number of turns to	
	primary number of turns. (OR) It is the ratio of secondary voltage to primary voltage. (OR) It	
	is the ratio of primary current to secondary current.	2
	OR	z marks
	Transformation ratio: $K = \frac{N_2}{N_1} = \frac{V_2}{V_1} = \frac{E_2}{E_1} = \frac{I_1}{I_2}$	
Sub	Answers	Marki
Q. N.		ng
		Schen e
	Attempt any THREE of the following:	12- Total

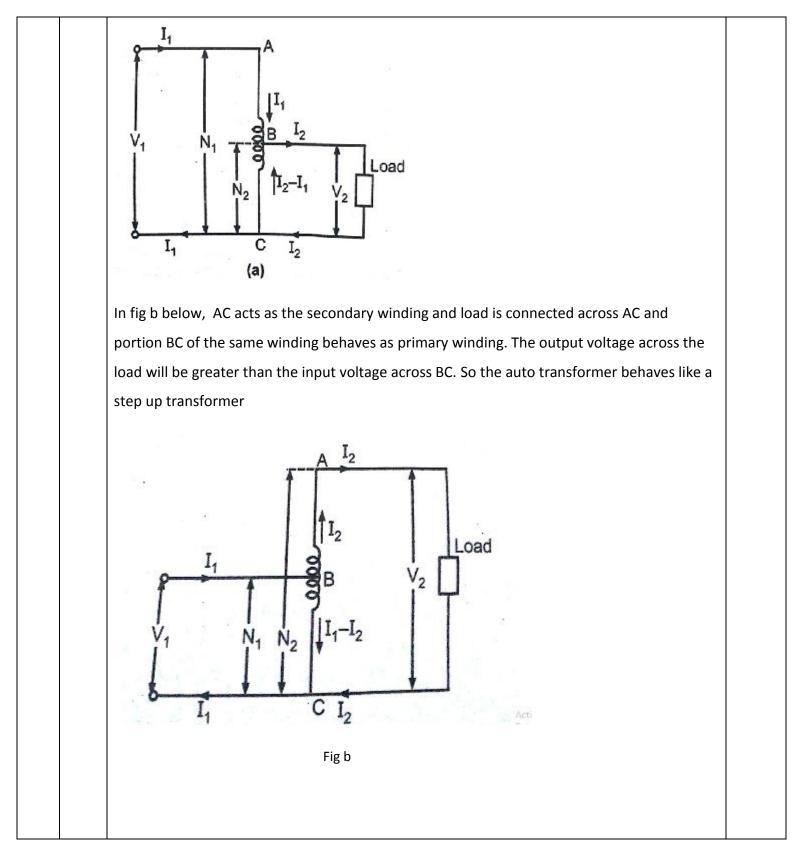
Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

<u> </u>				Ma 4M	
a)	 Compare electric circuits and magnetic circuits on the basis of (i) Definition (ii) Diagram (Analogy (iv) Dissimilarities. 				
Ans:					
	Parameter	Electric Circuit	Magnetic circuit	1 ma	
	Definition	An electric circuit is a path	It is defined as the route	for eac	
		in which electrons from a	or path which is	bit	
		voltage or current source	followed by magnetic		
		flow.	flux.		
	Diagram	T EMF			
	Analogy:	1)Reluctivity	Resistivity		
	Any one of	2)mmf	Emf		
	these	3)f/ux	Current		
		4)reluctance	Resistance		
		5)permeance	Conductance		
		6)flux density	Current density		
		7)permeability	conductivity		
	Dissimilarities	1)Energy is continuously	Energy is needed only		
	: Any one of	required to maintain the	for creating the flux		

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:


22232

		these	flow of current. 2)Magnetic flux does not flow in a circuit like current. 3) There is no known perfect insulator for magnetic flux.	 initially but not for maintaining it. 2) Electric current actually flows through a given circuit. 3)There are good insulators for electric current 		
b)	Explain the Working of common to not electrica theory and o In fig a below as secondar	working of aut auto transform both primary a ally isolated fro operation are s w, AC acts as t y winding and l out voltage com	r should be considered. o-transformer and state any ner :-It is a transformer with c nd secondary. In this transfor m each other as in case with a imilar to that of two winding he primary winding and portion oad is connected across BC. T nected to AC .The auto transformer of the primary of the the primary	one winding only, part of thi mer the primary and secon a two winding transformer. transformer. on BC of the same winding b The output voltage across lo	s being dary are But the behaves ad is less own	4M 2 marks for worki ng and diagra m of any one type

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

BOARD OF TECHNICAL EDUCATION

"tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology

<u>Model Answer</u> Subject Code:

22232

	 Advantages :- 1. Copper required in an auto transformer is less than that of conventional two winding transformer hence it is cheaper. 2. The resistance and leakage reactance of an auto transformer is less than the corresponding two winding transformer , so its regulation is better. 3. I²R losses of an auto transformer are less, so the efficiency of auto transformer is higher than that of two winding transformer. 	2 marks for any two advan tages
c)	Write the voltage & current equations, draw the circuit, voltage & current waveforms and phasor diagram of a R-C series circuit when it is connected across AC supply.	4M
Ans:	R-C series circuit: voltage equation : $v = V_m Sin(\omega t)$ Volt current equation: $i = ImSin(\omega t + \phi)$ Amp Circuit diagram : $\downarrow \qquad \qquad$	1mark for equati ons 1mark for circuit
	voltage & current waveforms: $ \frac{1}{11} + $	1mark for wavef orm

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

phasor diagram: 1mark for phaso r diagra m Vc d) Derive the EMF equation of a transformer. 4M Ans: Let N₁= No. of turns in primary 4 marks N₂= No. of turns in secondary Φ_m =Maximum flux in the core in webers = $B_m \times A$ f= frequency of ac input in Hz φ_m sin ωt Flux 1/(4f) Time As shown in the figure flux increases from its zero value to maximum value Φ_m in one quarter of the cycle i.e. $\frac{1}{4f}$ second. Therefore average rate of change of flux = $\frac{\phi_m}{1/4f} = 4f\phi_m Wb/s$ or volt Now, rate of change of flux per turn means induced e.m.f. in volt. Therefore Average e.m.f. per turn = $4f \phi_m volts$.

Page 8/27

BOARD OF TECHNICAL EDUCATION MAHARASHT (ISO/IEC - 2700

tified)

(Autonomous)

WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology Model Answer Subject Code:

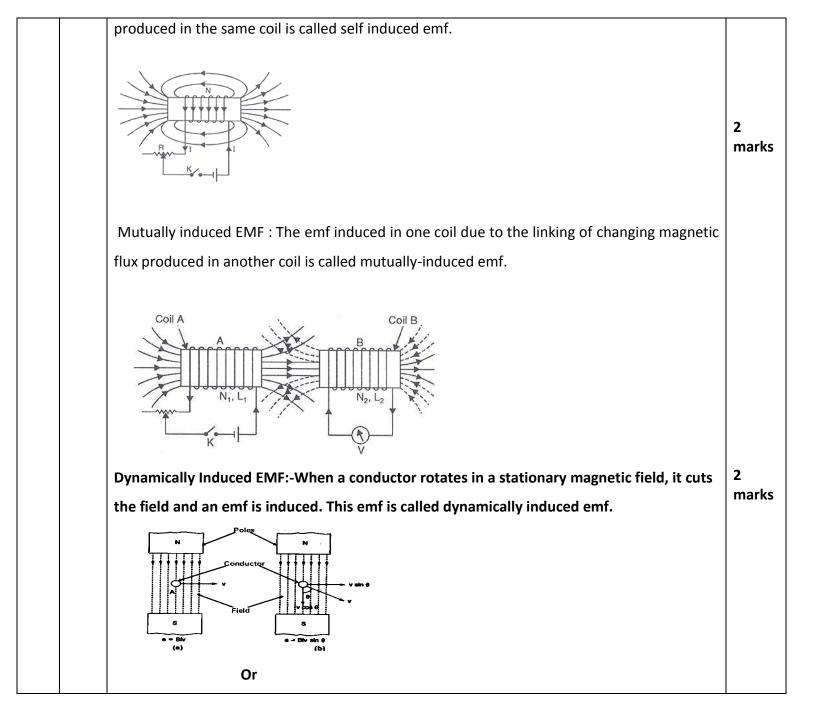
22232

	1		
		As flux ϕ varies sinusoidally, the r.m.s. value of induced e.m.f. is obtained by multiplying the	
		average value with form factor	
		form factor of sine wave = 1.11	
		Therefore r.m.s. value of e.m.f. per turn = $1.11 \times 4f \phi_m = 4.44f \phi_m volts$	
		Now r.m.s. value of the induced e.m.f. in the whole of the primary winding	
		= (induced e.m.f./turn) × No. of primary turns	
		$E_1 = 4.44 \Phi_m f N_1 volts$	
		Similarly, $E_2 = 4.44 \Phi_m f N_2$ volts	
		E.M.F equation of transformer is given by	
		E.M.F= 4.44 Φm f N volts	
Q.	Sub	Answers	Marki
Q. No.	Sub Q. N.	Answers	ng
		Answers	ng Schem
No.			ng Schem e
		Answers Attempt any TWO of the following:	ng Schem
No.			ng Schem e 12-
No.		Attempt any TWO of the following: A sinusoidal current is given by i = 15 sin (520t - 45°) Determine its (i) Amplitude (ii) RMS	ng Schem e 12- Total
No.	Q. N.	Attempt any TWO of the following:	ng Schem e 12- Total Marks
No.	Q. N.	Attempt any TWO of the following: A sinusoidal current is given by i = 15 sin (520t - 45°) Determine its (i) Amplitude (ii) RMS	ng Schem e 12- Total Marks
No.	Q. N. a)	Attempt any TWO of the following: A sinusoidal current is given by i = 15 sin (520t - 45°) Determine its (i) Amplitude (ii) RMS	ng Schem e 12- Total Marks 6M
No.	Q. N. a)	Attempt any TWO of the following: A sinusoidal current is given by i = 15 sin (520t - 45°) Determine its (i) Amplitude (ii) RMS	ng Schem e 12- Total Marks 6M
No.	Q. N. a)	Attempt any TWO of the following: A sinusoidal current is given by i = 15 sin (520t - 45°) Determine its (i) Amplitude (ii) RMS	ng Schem e 12- Total Marks 6M 1 mark for
No.	Q. N. a)	Attempt any TWO of the following: A sinusoidal current is given by i = 15 sin (520t - 45°) Determine its (i) Amplitude (ii) RMS	ng Schem e 12- Total Marks 6M

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology Model Answer Subject Code:

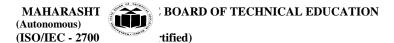

22232

l = 15 sin(520t - 45°)(i) Amplitude = peak or maximum value ie Im= 15A (ii) RMS value = Irms = 0.707 xIm = 0.707×15 = 10.605 A (iii) Average value $Iav = 0.637 \times Im$ = 0.637 × 15 = 9.555 A // (iv) Frequency: $\omega = 2\pi f$ $f = \frac{\omega}{2\pi} = \frac{520}{2} = 82.760 \text{Hz}//$ (v) Time period = $\frac{1}{f} = \frac{1}{82.760} = 0.012 \text{ sec} //$ (vi) Phase = -45° (lagging current)/ b) Explain statically induced EMF and Dynamically induced EMF with neat diagrams. 6M Ans: **Statically Induced EMF:-**1 mark When changing magnetic field links with a stationary coil an emf is induced. This emf is called statically induced emf. Statically induced EMF is of two types: 1 mark Self-induced EMF and Mutually induced EMF Self-induced EMF: The emf induced in one coil due to the linking of changing magnetic flux

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232



Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	E = B l. v. sinθ volts	
c)	A 1 KVA, 2000/200 V, 50 Hz single phase transformer has maximum flux of 20 mWb. Find (i) Number of turns in primary (ii) Number of turns in secondary (iii) Primary full load current (iv) Secondary full load current.	6M
Ans:	(i) No. of primary turns N1: $\therefore E_1 = 4.44 \text{ f } \Phi_m \text{ N1}$ $N_1 = \frac{E_1}{4.44 \text{ f } \Phi_m}$ $N_1 = \frac{2000}{4.44 \text{ x50 x 10^{-3}}} = 450$ $\therefore \text{ N1} = 450 \text{ turns}/$ (i) No. of secondary turns N2: $\therefore E_2 = 4.44 \text{ f } \Phi_m \text{ N2}$ $N_2 = \frac{E_2}{4.44 \text{ f } \Phi_m}$ $N_2 = \frac{200}{4.44 \text{ x 50 x 10^{-3}}} = 45$ $\therefore \text{ N2} = 45 \text{ turns}//$ (iii) Full load primary current T1: $KVA = \frac{V_1 \text{ T1}}{1000}$ $I_1 = \frac{1 \times 1000}{2000} = 0.5$ $I_1 = 0.5 \text{ A}//$ (iv) full load secondary current T2 $KVA = \frac{V_2 \text{ T2}}{1000}$ $I_2 = \frac{EVA \times 1000}{1000}$ $I_3 = 1 = \frac{1 \times 1000}{2000} = 5$ $I_4 = \frac{1 \times 1000}{2000} = 5$ $I_5 = 12 = \frac{1 \times 1000}{2000} = 5$	1.5 M for each calcul ation

Subject Name: Electrical and Electronics Technology

WINTER-18 EXAMINATION

Model Answer Subject Code:

22232

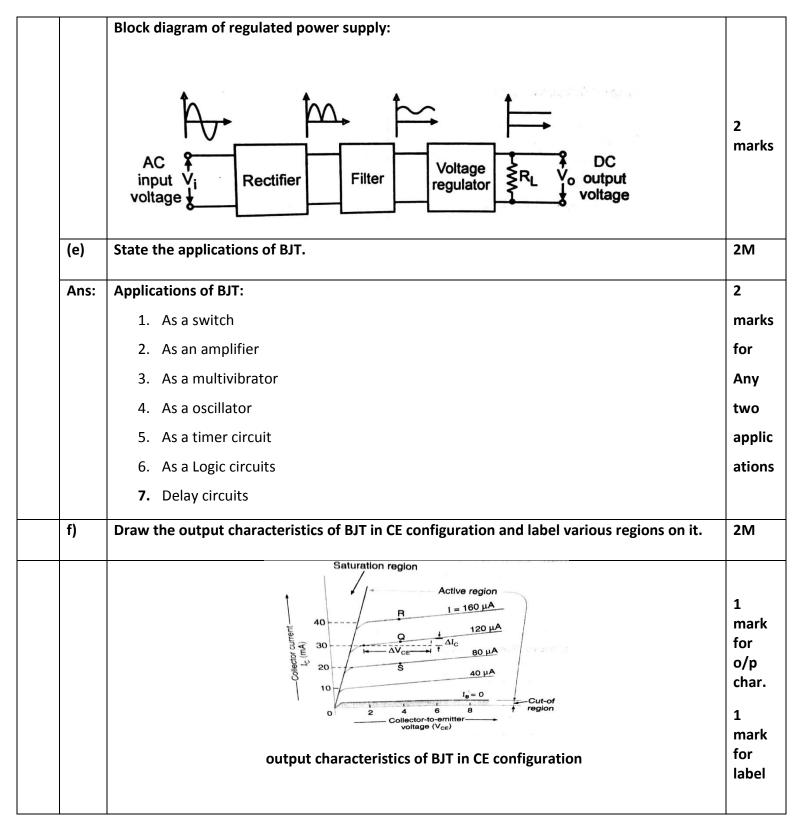
Q. No.	Sub Q. N.	Answers	Marki ng Schem e
		SECTION - II	
4		Attempt any FIVE of the following:	10- Total Marks
	(a)	List different types of resistors and capacitors.	2M
	Ans:	 Types of Resistors: 1. Carbon Composition resistor 2. Thin film resistor 3. Thick film resistor 4. Wire wound resistor 5. Thermistor 	1 mark for Any 2 Resist or
		 6. LDR 7. Photo resistor Types of capacitors: Electrolytic capacitor Variable capacitor Air ganged capacitor PVC ganged capacitor 	1 mark for Any 2 Capaci tor
		5. Trimmer capacitor	



Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232


(b)	Draw the circuit symbol of ideal current source and practical voltage source.	2M
Ans:	Ideal current source	
	A	
	$\bigvee^{1_{S}}$	1
	■•B	1 Mark
	practical voltage source	
	and the second sec	
	+	1 Mark
	- T	
	r → internal resistance	
(c)	Define filter and state it's types.	2M
	Define filter and state it's types. A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c.	2M 1
		1
	A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c.	1 mark
(c) Ans:	A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c. component of the rectifier output and allows only the d.c. component to reach the load.	1 mark
	A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c. component of the rectifier output and allows only the d.c. component to reach the load. Types of filters	1 mark
	A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c. component of the rectifier output and allows only the d.c. component to reach the load. Types of filters 1) Capacitor input filter(Shunt capacitor filter)	1 mark
	 A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c. component of the rectifier output and allows only the d.c. component to reach the load. Types of filters Capacitor input filter(Shunt capacitor filter) Choke input filter(series inductor filter) 	
	 A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c. component of the rectifier output and allows only the d.c. component to reach the load. Types of filters Capacitor input filter(Shunt capacitor filter) Choke input filter(series inductor filter) LC filter 	1 mark
	 A filter circuit may be defined as a circuit, which removes (or minimizes)the unwanted a.c. component of the rectifier output and allows only the d.c. component to reach the load. Types of filters Capacitor input filter(Shunt capacitor filter) Choke input filter(series inductor filter) LC filter T Filter 	1 mark

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

Subject Name: Electrical and Electronics Technology <u>M</u>

Model Answer Subject Code:

22232

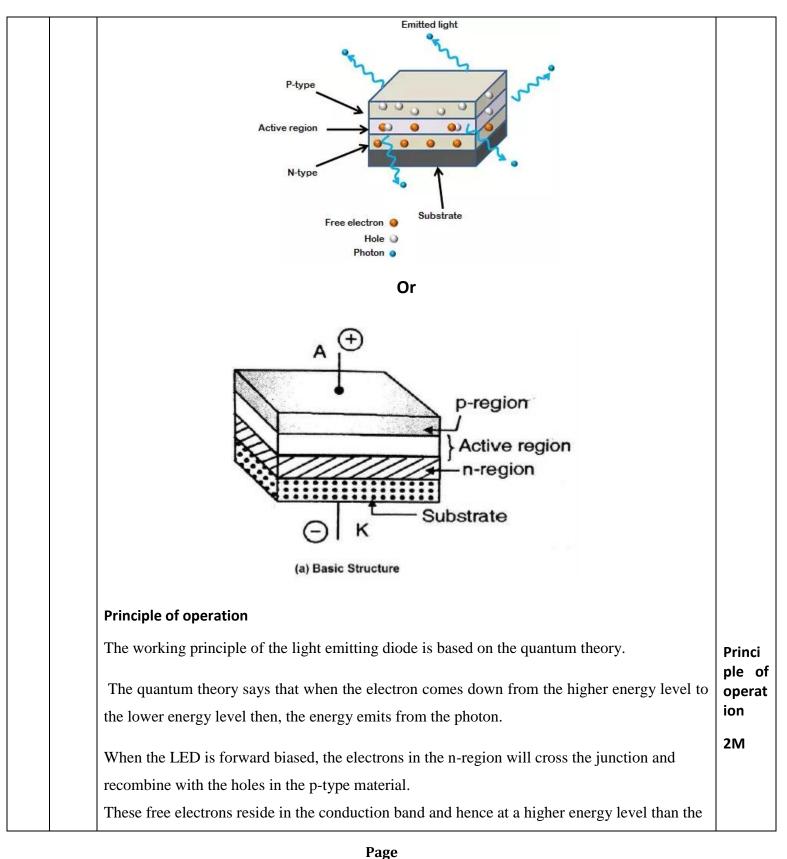
Q. No.	Sub Q. N.	Answers					
5.		Attempt any THREE of the	following:			12- Total Marks	
	a)	Find the resistor value from (i) Orange, Red, Brown (ii) Red, Black, Yellow,	n, Silver	de:-		4M	
	Ans:	=32*10 ¹ =320Ω, ±10% tole	2, brown=1 (multiplie			2M each	
	b) Ans:	Compare CE, CB, and CC co Parameter	nfigurations of a tran	common Base	Common Collector	4M Any 4	
		Voltage Gain	Very High		Less than Unity	point 1M each	
		Current Gain	β value is High/ greater than unity/ about 100	Alpha value is Less than Unity	Gamma value is High (100)		
		Power Gain	High	Moderate	Moderate		

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

c) Expl Ans: Cons The	Input Impedance (R_i) Output Impedance (R_o) ain the construction of struction (Any one of t	Moderate (1 KΩ) Moderate (50 K) ^TLED and state its pr	Low (50 Ω) High (1 M Ω)	High (300 KΩ) Low (300 Ω)	
c) Expl Ans: Cons The	Impedance (R_o) ain the construction of			Low (300 Ω)	
Ans: Cons The		LED and state its pr	inciple of operation		
The	struction (Any one of t				410
	 special type of semenide Phosphide(GaAsF The active region ex The light emerges fraction recombine. 	iconducting material) and Gallium Nitrid ists between the p and rom the active side in try lens/case bond active cavity iconductor die Leadframe	ials like Gallium I e(GaN). ad n regions. all the directions with Metal film Emiss Connection \downarrow		


WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

18

18/27

Subject Name: Electrical and Electronics Technology Model Answer Subject Code:

22232

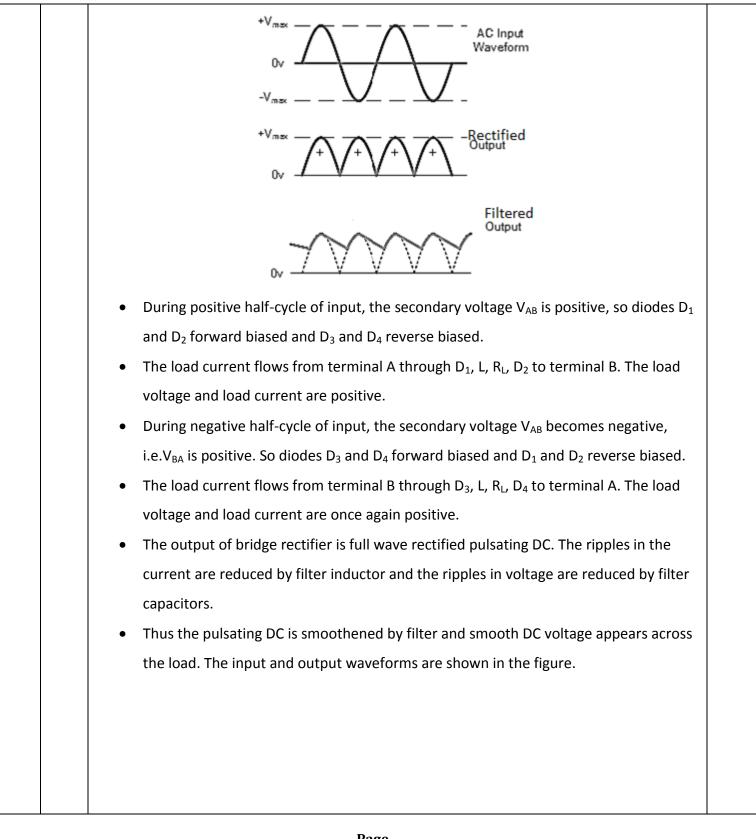
	holes in the valance band.	
	When the recombination takes place, these electrons return to the valance band which is at	
	lower energy level than the conduction band.	
	While returning , the recombining electrons give away the excess energy in the form of light.	
d)	List any 4 advantages and any 4 disadvantages of Integrated circuits.	4M
Ans:	Advantages of Integrated circuits:- 1. Extremely small size.	2 marks
	2. Very small weight .	for
	3. Very low cost .	any 4 advan
	4. More reliable .	tages
	5. Lower power consumption .	
	6. Easy replacement .	
	7. Close matching of components and temperature coefficients possible.	
	8. Improved functional performance .	
	9. Greater ability of operating at extreme temperatures.	
	10. Suitable for small signal operation .	
	11. No component projection above the chip surface.	
	Disadvantages of Integrated Circuits:-	2
	1. If any component in an IC fails, the whole IC has to be replaced by a new one.	marks
	2. Limited power rating.	for any 4
	3. Inductors cannot be fabricated directly	disadv
	4. Operation at low voltage as ICs function at fairly low voltage.	antage s
	5.Quite delicate in handling as these cannot withstand rough handling or excessive heat.	
	6.Fabrication of capacitors and resistors are limited in maximum value	
	7.High grade P-N-P assembly is not possible.	
	8.Low temperature coefficient is difficult to be achieved.	
	9.Large value of saturation resistance of transistors.	

Subject Name: Electrical and Electronics Technology

WINTER- 18 EXAMINATION

Model Answer Subject Code:

		10.Voltage dependence of resistor and capacitors.	
Q. No.	Sub Q. N.	Answers	Marki ng Schem e
6.		Attempt any TWO of the following:	12- Total Marks
	a)	Explain the operation of a full wave bridge rectifier with π filter using a neat diagram. Draw input and output waveforms.	6M
	Ans:	Or	Diagra m 2M Wavef orm 1M Expla nation 3M



WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232


MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER-18 EXAMINATION

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

b)	(i) Derive the relation between alpha (α) and beta (β).		6M
	(ii) Compare PN junction diode with zener diode.		
Ans:	Relation between alpha (α) and beta (β):-		3M
	Relation between α& β:		eac
	Current gain (a) of CB configuration = $\frac{I_C}{I_E}$		
	Current gain of (β) of CE configuration = $\frac{I_C}{I_B}$		
	We know that ;		
	$I_{\rm E} = I_{\rm B} + I_{\rm C}(1)$		
	Dividing equation (1) by I_C		
	$\frac{I_E}{I_C} = \frac{I_B}{I_C} + \frac{I_C}{I_C}$		
	Therefore $\frac{1}{\alpha} = \frac{1}{\beta} + 1$	[since $\alpha = \frac{I_C}{I_E}$, $\beta = \frac{I_C}{I_B}$]	
	Therefore $\frac{1}{\alpha} = \frac{1+\beta}{\beta}$		
	$\alpha (1 + \beta) = \beta$		
	$\alpha + \alpha \beta = \beta$		
	$\alpha = \beta - \alpha \beta$		
	$\alpha = \beta(1 - \alpha)$		
	Therefore $\beta = \frac{\alpha}{1-\alpha}$		
	Or		
	β		
	$\alpha = \frac{\beta}{1+\beta}$		

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

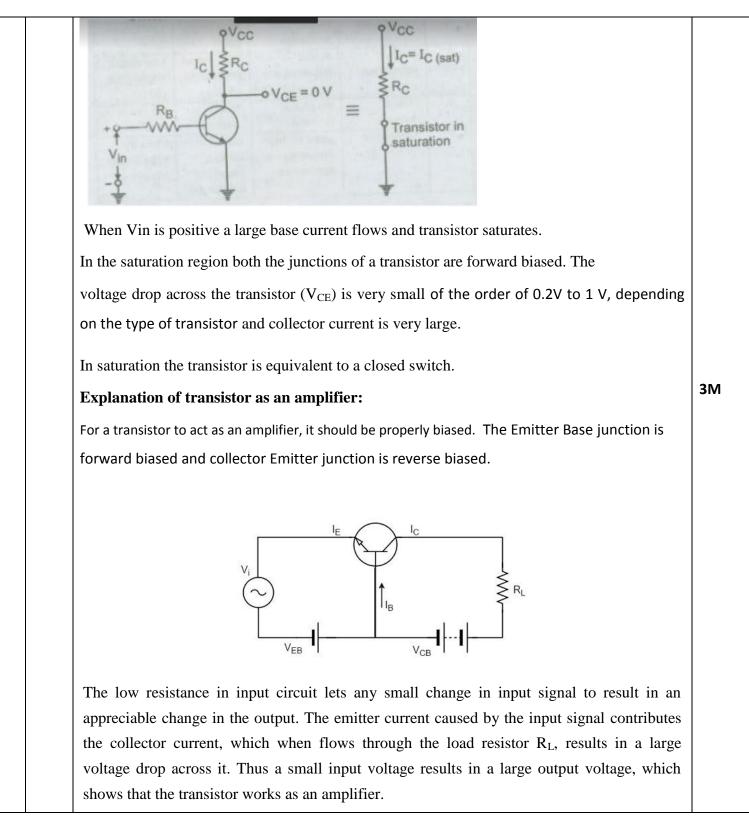
22232

Comparison of PN junction diode with zener diode:- Any three relevant points.		
Basis For Comparison	PN Junction Diode	Zener Diode
Definition	It is a semiconductor diode which conducts only in one direction, i.e., in forward direction.	The diode which allows the current to flow in both the directions i.e., forward and reverse is called Zener diode.
Symbol		
Reverse Current Effect	Damages the junction.	Does not damage the junction.
Doping Level	Low	High
Breakdown	Occurs at higher voltage.	Occurs at lower voltage.
Applications	For rectification	Voltage stabilizer, regulators.

Subject Name: Electrical and Electronics Technology

WINTER-18 EXAMINATION

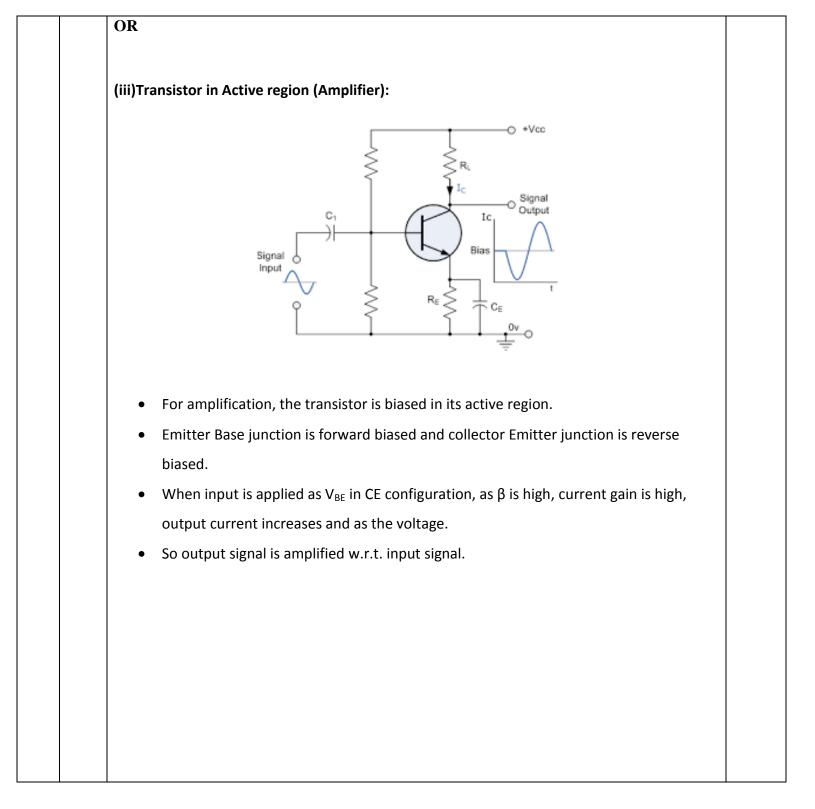
Model Answer Subject Code:


22232

Ans:	 Explain the operation of transistor as a switch and as an amplifier, with neat circuit diagrams. Explanation of transistor as a switch: The transistor can be used for two types of application viz. amplification and switching. For 	6N 3N			
,		31			
	The transistor can be used for two types of application viz. amplification and switching. For				
	the amplification, transistor is biased in its active region.				
	For switching applications it is biased to operate in the cut off (full OFF) region or saturation (full ON) region.				
:	a.Transistor in cut- off region:				
	$V_{In} = 0$ R_B V_{CC} R_C R_C R_C R_C $V_{CE} = V_{CC}$ $Transistor OFF$				
	In the cut –off region both the junctions of the transistor are reverse biased and very				
:	small reverse current flows through the transistors.				
	• The voltage drop across the transistor (V_{CE}) is high nearly equal to supply voltage V_{CC} .				
	. So, in the cut off region the transistor is equivalent to an open switch as shown in figure.				
1	b. Transistor in the saturation region:				

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:


22232

Subject Name: Electrical and Electronics Technology

Model Answer Subject Code:

22232

