

MODEL ANSWER

SUMMER-18 EXAMINATION

<u>Subject Title</u>:- Electrical and Electronics Technology Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

Subject Code:-

22232

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any SIX of the following :	12 Marks
	a)	Define: (i) Electromagnetism (ii) Magnetic flux.	2 Marks
	Ans:	 i)Electromagnetism : It is the magnetism generated by electricity. OR It is defined as the phenomenon associated with electric and magnetic fields and their interactions with each other. ii) Magnetic flux : The total number of magnetic lines of force in a magnetic field is called magnetic flux. 	1 mark for each
	b)	List the types of induced emf.	2 Marks
	Ans:	The types of induced emf are :i)Statically induced emf ,ii)Dynamically induced emf	1 mark for each
	c)	With the help of waveforms and phasor diagrams, show the phase relationship between voltage and current in pure inductive circuit.	2 Marks
	Ans:		

Page1

	$V_{L(t)} = V_m \sin(\omega t + 90^\circ)$ $I_{L(t)} = I_m \sin(\omega t)$ $\frac{\pi}{2} \text{ or } 90^\circ$ $\frac{\pi}{2} \text{ or } 90^\circ$ $\theta(\omega t)$	1mark- waveform and 1 mark for phasor diagram
	Phasor Diagram: 90° ψ 1	
d)	Define: (i) Inductive reactance (ii) Impedance.	2 Marks
Ans:	i) Inductive reactance: Inductive reactance is the opposition offered by an inductor to alternating current . It is denoted by X_L and given by $X_L = 2\pi f L\Omega = \omega L \Omega$ ii)Impedance: It is the total opposition offered to flow of AC current in an AC circuit. It is denoted by Z and the unit is ohm.	1 mark for each
e)	State the working principle of I ø transformer.	2 Marks
Ans:	Transformer works on the principle of mutual inductance. When an alternating voltage V_1 is applied to the primary winding of a transformer, an alternating flux φ is set up in the core. This alternating flux links with both the windings and induces self-induced emf E_1 in the primary winding and mutually induced emf E_2 in the secondary according to Faraday's laws of electromagnetic induction.	2 Marks
f)	State the types of single phase induction motors.	2 Marks
Ans:	The types of single phase induction motors are: i) Resistance split phase induction motor. ii) Capacitor split phase inductor motor. a. Capacitor start induction run motor b. permanent capacitor motor c. capacitor start capacitor run induction motor	2 marks for any four types

		iii) Shaded pole induction motor.	
	g)	Write emf equation of a transformer.	2 Marks
	Ans:	E.M.F equation of transformer is given by E.M.F= 4.44 Φ_m f N volts	1 mark for equation and 1 mark for
		where Φm = Maximum value of ac flux linking with primary and secondary winding. f = frequency of applied ac signal N= number of turns on primary or on secondary. Turns on primary winding = N ₁ Turns on secondary winding= N ₂ E.M.F= voltage induced in either primary or secondary winding Voltage induced in primary = E ₁ =4.44 Φ_m f N ₁ volts Voltage induced in primary = E ₂ =4.44 Φ_m f N ₂ volts	terminolog y
Q 2		Attempt any THREE of the following:	12 Marks
	a)	State Faraday's first and second law of electromagnetic induction.	4 Marks
	Ans:	i) Faraday's First Law:	2 mark for each law
		Whenever a conductor cuts the magnetic lines of force or is cut by the magnetic lines of force or flux linking with conductor changes, an emf is induced in the conductor. ii) Faraday's Second Law :	
		The magnitude of induced emf is directly proportional to the rate of change of flux. $e = -N \frac{d\phi}{dt} \text{ volts}$	
	b)	Draw series R-C circuit. Write its expression for impedance and show it on impedance triangle.	4 Marks
	Ans:	Series R-C circuit: $V_R \rightarrow V_C \rightarrow V$	Circuit diagram- 2marks, expression- 1 mark, impedance triangle- 1mark

	Expression for Impedance:	
	$Z = \sqrt{R^2 + Xc^2} \qquad \Phi = \tan^{-1}\frac{Xc}{R}$	
	Where , Z= impedance, R- resistance in Ω , Xc- capacitive reactance in Ω	
	Impedance triangle:	
	R Z Z X _c	
c)	Define: (i) Efficiency (ii) Voltage regulation of transformer.	4 Marks
Ans:	i) Efficiency : It is the ratio of output power to the input power of the transformer. It is denoted by η .	2 marks for each definition
	$\eta = \frac{\text{output power}}{\text{input power}} = \frac{\text{output power}}{\text{output power} + \text{losses}}$	
	$\eta = \frac{\text{output power}}{\text{output power + iron losses + copper losses}}$	
	$\eta = \frac{V_2 I_2 Cos \varphi_2}{V_2 I_2 Cos \varphi_2 + P_i + P_c}$	
	$Pi = iron loss, Pc=copper loss of transformer V_2I_2CosØ_2 = output power of transformer$	
	ii) Voltage Regulation of transformer: The ratio of the change in Secondary Terminal Voltage from no load to full load (V_{FL}) to no load voltage.(V_{NL})	
	The Regulation is usually expressed in percentage of no load Secondary terminal Voltage. So Voltage Regulation = $\frac{VNL-VFL}{VNL}$ X100 where,	

d)	Compare autotransformer with two	winding transformer. (4 points)	4 Marks
A115 .	Two winding transformer	Auto transformer	1 Mark
	1.It has two separate windings : a) primary, b)secondary.	1. An auto transformer has single winding which acts both as primary and secondary.	(Any 4)
	2.	2.	
	3. It provides good electrical isolation to both supply as well as load.	3. Electrical isolation is not provided by auto transformer as it has single winding only	
	4.Losses are higher than auto transformer due to its construction.	4. As only one winding is present, copper losses are less. Due to compact and simple structure of core, iron losses are also less.	
	5.Overall efficiency is lesser than auto transformer.	5. Overall efficiency is higher than two winding transformer.	
	6. Cost is higher than auto transformer.	6. Cost is lesser than 2 winding transformer.	

		7.Application : used in	7. Application:	
		1. power distribution,	1. used in both Synchronous	
		2. audio transmission.	motors and induction motors	
		2. Comment transformer	2. used in electrical apparatus	
		.Potential transformer.	testing labs since the voltage	
		4 Electric furneces	continuously varied.	
		4. Electric furnaces	3 They find application as	
			boosters in AC feeders to	
			increase the voltage levels.	
Q. 3		Attempt any TWO of the following:		12 Marks
	a)	Draw and explain B-H curve.		6 Marks
	Ans:			3 marks
		Diagram:		diagram (with
			B 4	complete
			A	detailing)
		a		& 3 marks explanation
			Bry	explanation
		-Hc/	/te	
		-H D	o G ->H	
			X	
		ps.	-BY F	
		E		
			▼ -B	
		Fundamention	B-H Curve	
		схріанацон:		
		B-H curve is obtained while plotting th	e graph between B & H for a magnetic	
		material while magnetized through one magnetizing force H can be increased of	complete cycle of magnetization. The value of or decreased by increasing or decreasing the	
		current through the coil. Initially when	H is increased from zero to maximum, flux	
		density also increases rapidly at first an	d reaches maximum saturated (region OA).	

	Now when H is decreased, B varies less rapidly along OC. At C, when $H = 0$, flux density retains some value called residual flux density (Br). Br measures the retentively or remanence of the magnetic material. Now if the current is reversed to magnetize the material in the opposite direction, as H is increased Br decreases till the point D where it becomes zero. The magnetizing force required to be applied in the opposite direction to remove the residual flux density is called coercive force (Hc) and is a measure of coercivity of the material. For a further increase in H the material gets magnetized with opposite polarity reaching saturation at the point E. The loop can be traced back to the point A by varying the current. At F, B = -Br for H = 0 & at G, B = 0 for H = Hc. Thus the closed loop OACDEFGA obtained when the magnetic material is taken through one complete cycle of magnetization is called the hysteresis loop. It is a measure of the energy dissipated due to hysteresis, more the area higher is the hysteresis loss.	
b)	An alternating voltage is represented by the expression: V = 25 sin (200 nt), Calculate: (i) Amplitude (ii) Time period (iii) RMS value (iv) Average value (v) Form factor (vi) Crest factor.	6 Marks
Ans:	Comparing the given equation with the general form of sinusoidal alternating voltage, $v = V_{\rm m}$ Sinot, we get, $V_{\rm m} = 25V$ i) Amplitude = 25V ii) Time period = $\frac{1}{f} = \frac{1}{100} = 0.01 \sec \left[2\pi f = 200\pi, f = \frac{200\pi}{2\pi} = 100 \text{Hz} \right]$ iii) RMS value = $V = \frac{V_{\rm m}}{\sqrt{2}} = \frac{25}{\sqrt{2}} = 17.68v$ iv) average value = $v_{av} = \frac{2V_m}{\pi} = \frac{2 \times 25}{\pi} = 15.92v$ v) form factor = $k_f = \frac{V}{V_{av}} = \frac{17.68}{15.92} = 1.11$ vi) Crest factor = $k_p = \frac{V_m}{V} = \frac{25}{17.62} = 1.414$	1 mark each
c)	A 200 kVA, 33001240 V, 50 Hz single phase transformer has 80 turns on secondary winding. Calculate: (i) Primary and secondary currents on full load. (ii) Maximum value of flux. (iii) Number of primary winding turns.	6 Marks
Ans:	i) Primary current on full load, $I_1 = \frac{kVA \times 1000}{V_1} = \frac{200 \times 1000}{3300} = 60.6A$ Secondary current on full load, $I_2 = \frac{kVA \times 1000}{V_2} = \frac{200 \times 1000}{240} = 833.33A$ ii) Let, $V_2 = E_2 = 4.44f \phi_m N_2$ Hence, $\phi_m = \frac{240}{4.44 \times 50 \times 80} = 13.5$ mwb = 0.0135 wb	2 marks each

		iii)	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$, therefore $N_1 = \frac{V_1}{V_2} \times N_2 = \frac{33}{24}$	$\frac{00}{10} \times 80 = 1100$	
Q. 4		Attempt	any FIVE of the following:		10 Marks
	a)	Compare	e analog and digital ICs.		2 Marks
	Ans:				2 marks for any two
		Sr. No.	Analog ICs	Digital ICs	correct comparison
		1	Analog ICs accept and output analog data through its pins.	Digital ICs deal with only logic data inputs and outputs.	
		2	Almost every analog IC requires external components for its functioning.	Digital ICs don't require external components.	
		3	Example: IC555	Example: any digital IC like 7404 which is a NOT gate	
		4	Variable input is accepted by IC for dedicated application.	Works with TTL logic level and works in voltage range of 0–5V only.	
	b)	Define na	assive components and classify them.		2 Marks
	Ans:	Passive c amplifyin require ex Classifica	components : The components which by ag (or processing) electrical signals are lectrical energy source for their functioni ation: Resistors, Capacitors, Inductors	themselves are not capable of known as passive components. They ng. These are bidirectional devices. etc.	Definition- 1 marks Classificati on-1 marks
	c)	List any	two applications of LED.		2 Marks
	Ans:	1) L 2) T	They are used in opto couplers.	dot matrix display.	any two
		3) T	They are used for indicating power ON/	OFF conditions.	
		4) T	They are used in infrared remote control	s.	
		5) T	They are used as indicators in various ele	ectronic circuits.	
	d)	Draw syr	mbols of: (i) Zener diode (ii) LED.		2 Marks
	Ans:				

		i) Zener diode	1 marks each
	e)	State why transistor is called as a bipolar device.	2 Marks
	Ans:	In case of transistor (BJT), the current conduction takes place due to both electrons and holes, ie, due to both positive as well as negative polarity charge carriers. Therefore transistor is called a bipolar device.	2 marks
	f)	List the different transistor configurations.	2 Marks
	Ans:	 The three different transistor configurations are, 1. Common emitter configuration(CE) 2. Common base configuration(CB) 3. Common collector configuration(CC) 	2 marks for correct listing
Q.5		Attempt any THREE of the following:	12 Marks
	a)	Find the resistor value from the given colour coding: (i) Blue Grey Black Red Gold. (ii) Brown Black Black Silver	4 Marks
	Ans:	Note: Assessor can give step marks for identifying at least correct digits for given colors, even if final answer is wrong. i) Blue Grey Black Red Gold $6 \ 8 \ 0 \ x \ 10^2 \pm 5\%$ $= 68 \text{ K}\Omega \pm 5\%$ ii) Brown Black Black Silver $1 \ 0 \ x \ 10^0 \pm 10\%$ $= 10 \ \Omega \ \pm 10 \ \%$	2 marks for each correct calculation
	b)	State the need for filters and list the different types of filters.	4 Marks
	Ans:	Need for filters1) Output of all rectifiers is pulsating dc voltage and most of citcuits which work	2 marks for need

	on dc requires pure dc voltage.	
	 So in order to get pure dc waveform, filters are connected at the output of rectifier to remove the ripple. 	
	 Thus filters are electronic circuits used alongwith rectifier in order to get a pure ripple free dc voltage. 	
	Types of filters 1) Capacitor input filter(Shunt capacitor filter)	2 marks for types
	2) Choke input filter(series inductor filter)	types
	3) LC filter	
	4) π Filter	
	5) RC filter	
c)	Derive the relationship between α & β of transistor.	4 Marks
	Since $I_C/I_E = \alpha$ and $I_C/I_B = \beta$ So $I_E/I_C = 1/\alpha$ and $I_B/I_C = 1/\beta$ $1/\alpha = 1/\beta + 1$ <u>Therefore $\alpha = \beta/1 + \beta$</u> The above expression may also be written as (OPTIONAL) $\alpha(1 + \beta) = \beta$ $\alpha + \alpha \beta = \beta$ $\alpha = \beta - \alpha \beta$ $\alpha = \beta - \alpha \beta$ $\alpha = \beta (1 - \alpha)$ <u>Therefore $\beta = \alpha/1 - \alpha$</u>	2 marks each derivation
d)	Explain ideal voltage source with suitable diagram.	4 Marks
Ans:		2 marks diagram
	Ideal Voltage Source	

		 A voltage source is a two terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. The source resistance of an ideal voltage source is zero. Therefore the terminal voltage remains constant equal to V volts without load (R_L = ∞) or with load 	2 marks explanation
Q.6		Attempt any TWO of the following:	12 Marks
	a)	Draw symbols for: (i) Resistor (ii) Capacitor (iii) Inductor (iv) PNP transistor (v) NPN transistor (vi) PN junction diode.	6 Marks
	Ans:		1 mark for each symbol
		$\mathbf{Inductor}$ $\mathbf{B} \underbrace{\mathbf{C}}_{\mathbf{E}}$ \mathbf{PNP} \mathbf{C}	
		PN H Anode PN junction diode	

	After point A capacitor voltage starts reducing.	
	 Operation in interval A to B: After point A, voltage on capacitor is higher than rectified output. Diodes D₁ and D₂ are reversed biased. So capacitor discharges exponentially through the load resistance R_L. 	
	 As value of R_L is much higher than R_F, the capacitor discharges slowly. Value of C is large enough to make discharging time constant as large as possible. This will reduce ripple content in the output voltage. 	
	 Operation in interval B to C: After point B, rectified output again increases. So again capacitor C will start charging towards Vm in interval B to C abd the process repeats. 	
	• The load voltage waveform with capacitor filter is very close to theideal dc voltage waveform as most of the ripple is removed from rectified output.	
c)	Draw: (i) Input characteristics of transistor in CE mode. (ii) Output characteristics of transistor in CE mode and show different regions on it.	6 Marks
Ans:	$\frac{1_{B}(\mu A)}{80 - \frac{V_{CE} = 5 V}{70 - \frac{V_{CE} = 5 V}{1 - \frac{1}{\Lambda} \frac{1}{1B}}} = 20 V$	2 marks for input characteris tic

