\square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following:
a) If $f(x)=x^{4}-2 x+7$ then find $f(0)+f(2)$.
b) If $f(x)=\tan x$, then show that $f(2 x)=\frac{2 \cdot f(x)}{1-[f(x)]^{2}}$
c) If $y=2^{x}+\cos (3 x)$. Find $\frac{d y}{d x}$.
d) Evaluate : $\int \frac{\sin x}{\cos ^{2} x} d x$
e) Evaluate : $\int \frac{1}{x(x-1)} d x$
f) Show that the root of the equation $x^{3}-x-4=0$ lies between ' 0 ' and ' 2 '.
g) Find the area under the curve $y=e^{x}$ from the ordinate $x=0$ to $x=1$ and x-axis.
2. Attempt any THREE of the following:
a) If $x \sin y+y \sin x=0$ find $\frac{d y}{d x}$.
b) If $x=a \cos \theta, y=a \sin \theta$. Find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$.
c) Find the maximum and minimum values of $2 x^{3}-3 x^{2}-36 x+10$.
d) A metal wire 100 cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
3. Attempt any THREE of the following:
a) Find radius of curvature of the curve $\sqrt{x}+\sqrt{y}=1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$.
b) Find the equation of tangent to the curve $y=x^{2}-x-6$ where it cuts the X -axis.
c) If $y=\log [\log (\log x)]$. Find $\frac{d y}{d x}$.
d) Evaluate : $\int \frac{d x}{x\left[9+(\log x)^{2}\right]}$
4. Attempt any THREE of the following:
a) Evaluate : $\int \frac{d x}{3+2 x-x^{2}}$
b) Evaluate : $\int \frac{d x}{5+4 \cos x}$
c) Evaluate : $\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+1\right)} d x$
d) Evaluate : $\int e^{x} \cdot \sin 4 x \cdot d x$
e) Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x$
5. Attempt any TWO of the following:
a) Find the area bounded by the curve $y=x^{2}$ and the line $y=x$.
b) i) Solve : $x\left(1+y^{2}\right) d x+y\left(1+x^{2}\right) d y=0$.
ii) Show that $y=\mathrm{A} \sin m x+\mathrm{B} \cos m x$ is solution of differential equation $\frac{d^{2} y}{d x^{2}}+m^{2} y=0$.
c) The current in a circuit is given by $i=\frac{d q}{d t}=20 \mathrm{e}^{-5 \mathrm{t}}$, find amount of charge q transferred between $\mathrm{t}=0$ to 0.1 sec .
6. Attempt any TWO of the following:
a) Solve the following by using Jacob's method upto four iterations $20 x+y-2 z=17,3 x+20 y-z=-18$, $2 x-3 y+20 z=25$.
b) i) Using Bisection method find approximate roots of the equation $x^{3}-x-4=0$ upto three iterations.
ii) Find approximate value of $\sqrt[3]{7}$ by using Newton Raphson method. (three iterations only)
c) Solve the equation by using Guass Elimination method.

$$
\begin{aligned}
& 2 x+2 y+3 z=4 \\
& 4 x-2 y+z=9 \\
& x+5 y+4 z=3
\end{aligned}
$$

