22224

11920

3 Hours / 70 Marks

Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Illustrate your answers with neat sketches wherever necessary.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data, if necessary.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any FIVE of the following:

10

- State whether the function is odd or even, $f(x) = \frac{e^x + e^{-x}}{2}$
- b) If $f(x) = \log_4^x + 3$, find $f(\frac{1}{4})$
- Find $\frac{dy}{dx}$ if $y = x^2 \cdot e^x$
- Evaluate: $\int [e^x + a^x + x^a + a^a] dx$
- Evaluate : $\int \left[\frac{1}{(1+\cos 2x)} \right] dx$
- Find the area bounded by y = x, X-axis and x = 0 to x = 4. f)
- Find a real root of equation $x^3 + 4x 9 = 0$ in the interval (1, 2) by using bisection method (only one iteration)

22224

[2]

Marks

2. Solve any THREE of the following:

12

a) Find
$$\frac{dy}{dx}$$
, if $y = \frac{5e^x}{3e^x + 1}$ at $x = 0$

b) If
$$x = a(1 + \cos \theta)$$
, $y = a(1 - \cos \theta)$ find $\frac{dy}{dx}$

- c) A metal wire 36 cm long is bent to form a rectangle find its dimensions when its area is maximum.
- d) Find radius of curvature of a curve $y = \log(\sin x)$ at $x = \frac{\pi}{2}$

3. Solve any THREE of the following:

12

- a) Find equation of tangent and normal to the curve $4x^2 + 9y^2 = 40$ at point (1, 2)
- b) Find $\frac{dy}{dx}$ if $y = \tan^{-1} \left[\frac{2x}{1 + 35x^2} \right]$

c) If
$$x^y = e^{(x-y)}$$
 Show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$

d) Evaluate :
$$\int \frac{dx}{5+3\cos 2x}$$

4. Solve any THREE of the following:

12

a) Evaluate :
$$\int \frac{\left[e^{x}(x+1)\right]}{\cos^{2}(x \cdot e^{x})} dx$$

b) Evaluate :
$$\int \frac{dx}{2x^2 + 3x + 2}$$

c) Evaluate :
$$\int x^2 \cdot \tan x \, dx$$

d) Evaluate :
$$\int \frac{\sec^2 x}{(\tan x) [\tan x + 1]} dx$$

e) Evaluate :
$$\int_{0}^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx$$

22224 [3]

			Marks
5.		Solve any <u>TWO</u> of the following:	12
	a)	Find area bounded by the curve $y = x^2$ and the line $y = x$	
	b)	Attempt the following:	
		(i) From the differential equation by eliminating the arbitrary constant if $y = A \cos x + B \sin x$.	
		(ii) Solve $(1+x^2) dy - x^2 \cdot y dx = 0$	
	c)	Solve the D.E. $\frac{dq}{dt} + \frac{1}{RC} q = \frac{E}{R}$ given that $q = 0$ when $t = 0$	
		and E, R, C are constant.	
6.		Solve any <u>TWO</u> of the following:	12
	a)	Attempt the following:	
		(i) Solve the equation by Gauss - Seidal method. (two iterations only)	
		10x + y + 2z = 13, $3x + 10y + z = 14$, $2x + 3y + 10z = 15$	
		(ii) Solve the following system of equation by using Jacobi-Iteration method. (two iterations)	
		5x + 2y + z = 12, $x + 4y + 2z = 15$, $x + 2y + 5z = 20$	
	b)	Solve the following system of equations by using Gauss elimination method.	
		x + 2y + 3z = 14, $3x + y + 2z = 11$, $2x + 3y + z = 11$	
	c)	Using Newton - Raphson method find the approximate root of the equation (use four iterations)	
		$x^2 + x - 5 = 0$	