11819

3 Hours / 70 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any FIVE of the following: 10
a) If $f(x)=x^{3}-x$ find $f(1)+f(2)$
b) State whether the function
$f(x)=x^{3}-3 x+\sin x+x \cdot \cos x$ is even or odd.
c) Find $\frac{d y}{d x}$ if $y=\mathrm{e}^{2 x} \cdot \log (x+1)$
d) Evaluate $\int\left(e^{2 x}+\frac{1}{1+x^{2}}\right) d x$
e) Evaluate $\int \frac{d x}{9 x^{2}-16}$
f) Find the area enclosed by the curve $y=x^{3}, x$-axis and the ordinates $x=1$ and $x=3$
g) Show that the root of $x^{3}-9 x+1=0$ lies between 2 and 3 .
2. Solve any THREE of the following:
a) If $x^{2}+y^{2}+2 x y-y=0$ find $\frac{d y}{d x}$ at $(1,2)$
b) If $x=a(2 \theta-\sin 2 \theta)$ and $y=a(1-\cos 2 \theta)$
find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$
c) Find the maximum and minimum value of
$y=x^{3}-\frac{15}{2} x^{2}+18 x$
d) A beam is bent in the form of the curve $\mathrm{y}=2 \sin x-\sin 2 x$.

Find the radius of curvature of the beam at the point $x=\frac{\pi}{2}$
3. Solve any THREE of the following:
a) Find the equation of tangent and normal to the curve $2 x^{2}-x y+3 y^{2}=18$ at point $(3,1)$
b) A manufacturer can sell x items at a price of ₹ (330-x) each. The cost of producing x items is $₹ x^{2}+10 x+12$. Determine the number of items to be sold so that the manufacturer can make the maximum profit.
c) If $x^{y}=e^{x-y}$ then prove that
$\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
d) Evaluate $\int \frac{d x}{2 x+x \cdot \log x}$
4. Solve any THREE of the following:
a) Evaluate $\int \frac{d x}{x^{2}+4 x+25}$
b) Evaluate $\int \frac{d x}{2+3 \cos 2 x}$
c) Evaluate $\int x \cdot \tan ^{-1} x d x$
d) Evaluate $\int \frac{x^{2}+1}{(x+1)(x+2)(x-3)} d x$
e) Evaluate $\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt[3]{\tan x}}$
5. Solve any TWO of the following:
a) Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ about the x-axis
b) Solve the following.
(i) Form the differential equation by eliminating the arbitrary constants if $y^{2}=4 a x$
(ii) Sove $\left(1+x^{2}\right) d y-\left(1+y^{2}\right) d x=0$
c) A resistance of 100Ω and inductance of $0 \cdot 1$ henries are connected in series with a battery of 20 volts. Find the current in the circuit at any instant, if the relation between L, R and E is
$\mathrm{L} \frac{d i}{d t}+\mathrm{R} i=\mathrm{E}$
6. Solve any TWO of the following:
a) Solve the following
(i) Find the approximate root of the equation $x^{2}+x-3=0$ in the interval $(1,2)$ by using Bisection method (use two iterations)
(ii) Solve the following system of equations by using Gauss elimination method

$$
x+y+z=6,2 x-3 y+3 z=5,3 x+2 y-z=4
$$

b) Solve the following system of equations by using Gauss Seidal method (use four iterations) correct upto 3 places of decimals. $x+7 y-3 z=-22,5 x-2 y+3 z=18,2 x-y+6 z=22$
c) Using Newton-Raphson method find the approximate root of the equation correct upto 3 places of decimals.
$x^{3}-2 x-5=0$ (Use four iterations)

