21222
3 Hours / 70 Marks
15 minutes extra for each hour
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any FIVE of the following:
a) If $\mathrm{f}(x)=3 x^{2}-5 x+7$, show that $\mathrm{f}(-1)=3 \mathrm{f}(1)$.
b) State whether the function $\mathrm{f}(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ is odd or even.
c) If $y=\mathrm{e}^{x \log _{\mathrm{e}} 5}$, find $\frac{d y}{d x}$.
d) Evaluate : $\int \frac{\sec ^{2} x}{3+\tan x} d x$
e) Evaluate : $\int \frac{d x}{\sqrt{9-4 x^{2}}}$
f) Find the order and degree of the following differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\sqrt{1+\frac{d y}{d x}}=0
$$

g) Find a real root of the equation $x^{3}-4 x-9=0$ in the interval $(2,3)$ by using bisection method (Use two iterations)
2. Solve any THREE of the following:
a) If $x^{4}=\mathrm{e}^{x-4}$, then prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
b) If $x=2 \cos t-\cos 2 \mathrm{t}, y=2 \sin \mathrm{t}-\sin 2 \mathrm{t}$, find $\frac{d y}{d x}$ at $\mathrm{t}=\frac{\pi}{2}$.
c) A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
d) Find the radius of curvature of the curve $y=\log (\sin x)$ at $x=\frac{\pi}{2}$.
3. Solve any THREE of the following:
a) Find the points on the curve $y=x^{2}-6 x+8$, where the tangent is parallel to x - axis.
b) If $y=\tan ^{-1} \sqrt{\frac{1+\cos x}{1-\cos x}}$, find $\frac{d y}{d x}$.
c) Show that the right angled triangle whose hypotenuse is 60 cm has its area maximum when each of its remaining two sides is $30 \sqrt{2} \mathrm{~cm}$.
d) Evaluate : $\int \frac{1+x-x^{2}}{\sqrt{x}} d x$
4. Solve any THREE of the following:
a) Evaluate : $\int \frac{d x}{1+\sin x}$
b) Evaluate : $\int \frac{(x-1) \mathrm{e}^{x}}{x^{2} \cdot \sin ^{2}\left(\frac{\mathrm{e}^{x}}{x}\right)} d x$
c) Evaluate : $\int \tan ^{-1} x d x$
d) Evaluate : $\int_{5}^{10} \frac{d x}{(x-1)(x-2)}$
e) Evaluate : $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt[n]{\tan x}} d x$
5. Solve any TWO of the following:
a) Find the area bounded by the curve $y=\sin 2 x$, for $0 \leq x \leq \pi$, and x-axis between $x=\frac{\pi}{3}$ and $x=\frac{3 \pi}{4}$.
b) Solve the following:
i) Show that $y=\mathrm{A} \sin x+\mathrm{B} \cos x$ a solution of differential equation $\frac{d^{2} y}{d x^{2}}+y=0$.
ii) Solve : $x \frac{d y}{d x}-y=x^{2}$
c) The acceleration of a particle is given by $\frac{d^{2} x}{d t^{2}}=3 \mathrm{t}^{2}-6 \mathrm{t}+8$.

Find the distance covered in 2 seconds given that $\mathrm{v}=0$, $x=0$ at $t=0$.
6. Solve any TWO of the following: 12
a) Solve the following:
i) Find the root of the equation $\cos x-x \mathrm{e}^{x}=0$ using the regular-falsi method. (carry out two iterations)
ii) Solve the following system of equations by using Gauss Elimination method.

$$
\begin{aligned}
& 2 x+3 y+z=13, x-y-2 z=-1 \\
& 3 x+y+4 z=15
\end{aligned}
$$

b) Solve the following system of equations by using Gauss Seidal method.
$20 x+y-2 z=17 ; 3 x+20 y-z=-18$;
$2 x-3 y+20 z=25$.
c) Using Newton-Raphson method to find the approximate root of the equation $x \log _{10} x=1.2$. (carry out three iterations)

