22224

	urs / 70 Marks Seat No.
Instru	ctions – (1) All Questions are Compulsory.
	(2) Answer each next main Question on a new page.
	(3) Illustrate your answers with neat sketches wherever necessary.
	(4) Figures to the right indicate full marks.
	(5) Assume suitable data, if necessary.
	(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
	(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.Marks
1.	Solve any \underline{FIVE} of the following: 10
a)	If $f(x) = 3x^2 - 5x + 7$, show that $f(-1) = 3 f(1)$.
b)	State whether the function $f(x) = \frac{e^x + e^{-x}}{2}$ is odd or even.
c)	If $y = e^{x \log_6 5}$, find $\frac{dy}{dx}$.
d)	Evaluate : $\int \frac{\sec^2 x}{3 + \tan x} dx$
e)	Evaluate : $\int \frac{dx}{\sqrt{9-4x^2}}$
f)	Find the order and degree of the following differential equation:
	$\frac{d^2y}{dx^2} + \sqrt{1 + \frac{dy}{dx}} = 0$

g) Find a real root of the equation $x^3 - 4x - 9 = 0$ in the interval (2, 3) by using bisection method (Use two iterations)

22224

2.

Marks

- Solve any <u>THREE</u> of the following: a) If $x^4 = e^{x-4}$, then prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$.
- b) If $x = 2 \cos t \cos 2t$, $y = 2 \sin t \sin 2t$, find $\frac{dy}{dx}$ at $t = \frac{\pi}{2}$.
- c) A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
- d) Find the radius of curvature of the curve $y = \log(\sin x)$ at $x = \frac{\pi}{2}$.

3. Solve any <u>THREE</u> of the following:

a) Find the points on the curve $y = x^2 - 6x + 8$, where the tangent is parallel to x - axis.

b) If
$$y = \tan^{-1} \sqrt{\frac{1 + \cos x}{1 - \cos x}}$$
, find $\frac{dy}{dx}$.

c) Show that the right angled triangle whose hypotenuse is 60 cm has its area maximum when each of its remaining two sides is $30\sqrt{2}$ cm.

d) Evaluate :
$$\int \frac{1+x-x^2}{\sqrt{x}} dx$$

4. Solve any <u>THREE</u> of the following:

a) Evaluate : $\int \frac{dx}{1+\sin x}$

b) Evaluate :
$$\int \frac{(x-1)e^x}{x^2 \cdot \sin^2\left(\frac{e^x}{x}\right)} dx$$

c) Evaluate :
$$\int \tan^{-1} x \, dx$$

d) Evaluate :
$$\int_{5}^{10} \frac{dx}{(x-1)(x-2)}$$

e) Evaluate :
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt[n]{\tan x}} dx$$

12

Marks

5. Solve any <u>TWO</u> of the following:

- a) Find the area bounded by the curve $y = \sin 2x$, for $0 \le x \le \pi$, and x-axis between $x = \frac{\pi}{3}$ and $x = \frac{3\pi}{4}$.
- b) Solve the following:
 - i) Show that $y = A \sin x + B \cos x$ a solution of differential equation $\frac{d^2y}{dx^2} + y = 0$.

ii) Solve :
$$x \frac{dy}{dx} - y = x^2$$

c) The acceleration of a particle is given by $\frac{d^2x}{dt^2} = 3t^2 - 6t + 8$. Find the distance covered in 2 seconds given that v = 0, x = 0 at t = 0.

6. Solve any <u>TWO</u> of the following:

- a) Solve the following:
 - i) Find the root of the equation $\cos x xe^x = 0$ using the regular-falsi method. (carry out two iterations)
 - ii) Solve the following system of equations by using Gauss Elimination method.

2x + 3y + z = 13, x - y - 2z = -1,3x + y + 4z = 15.

b) Solve the following system of equations by using Gauss Seidal method.

20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25.

c) Using Newton-Raphson method to find the approximate root of the equation $x \log_{10} x = 1.2$. (carry out three iterations)

12

12