21819

3 Hours / 70 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any FIVE of the following: 10

a) If $f(x)=x^{3}-5 x^{2}-4 x+20$, show that $f(0)=-2 f(3)$.
b) State whether the function $f(x)=x^{3}-3 x+\sin x+x \cos x$, is odd or even.
c) If $y=\sin x \cdot \cos 2 x$, find $\frac{d y}{d x}$.
d) Evaluate : $\int \cos ^{2} x d x$.
e) Evaluate : $\int \frac{1}{3 x+5} d x$.
f) Find the area between the line $y=2 x, \mathrm{X}$-axis and the ordinates $x=1$ and $x=3$.
g) Find approximate root of the equation $x^{2}+x-3=0$ in $(1,2)$ by using Bisection method. (Use two iterations)
2. Solve any THREE of the following:
a) Find $\frac{d y}{d x}$ if $x^{3}+x y^{2}=y^{3}+y x^{2}$
b) Find $\frac{d y}{d x}$ at $\theta=\pi / 4$ if $x=a \cos ^{3} \theta, y=b \sin ^{3} \theta$
c) A manufacture can sell x items per week at a price $(23-0.001 x)$ rupees each. It cost $(5 x+2000)$ rupees to produce x items. Find the number of items to be produced per week for maximum profit.
d) Find the radius of curvature of the curve $y=\mathrm{e}^{x}$ at the point where it crosses the Y-axis.
3. Solve any THREE of the following:
a) Find the equation of tangent and normal to the curve $2 x^{2}-x y+3 y^{2}=18$ at $(3,1)$.
b) Differentiate with respect to $x: x^{x}+5^{x}+x^{5}+5^{5}$
c) If $x^{3} \cdot y^{2}=(x+y)^{5}$, show that $\frac{d y}{d x}=\frac{y}{x}$
d) Evaluate : $\int \frac{e^{x}(x+1)}{\sin ^{2}\left(x e^{x}\right)} d x$.
4. Solve any THREE of the following:
a) Evaluate: $\int \frac{x-3}{x^{3}-3 x^{2}-16 x+48} d x$
b) Evaluate: $\int \frac{1}{2+3 \cos x} d x$
c) Evaluate: $\int e^{x} \cdot \sin 4 x d x$
d) Evaluate: $\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+1\right)} d x$
e) Evaluate: $\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} d x$
5. Solve any TWO of the following:
a) Find the area bounded by two parabolas $y^{2}=2 x$ and $x^{2}=2 y$.
b) Solve the following:
(i) Form the differential equation from the relation

$$
y=\mathrm{A} \cdot \mathrm{e}^{x}+\mathrm{B} \cdot \mathrm{e}^{-x}
$$

(ii) Solve $\frac{d y}{d x}+y \cdot \cot x=\operatorname{cosec} x$
c) The velocity of a particle is given by $\frac{d x}{d t}=3 t^{2}-6 t+8$.

Find the distance covered in 2 seconds given that $x=0$
at $\mathrm{t}=0$.
6. Solve any TWO of the following:
a) Solve the following:
(i) Solve the following system of equations by Jacobi-Iteration method. (Two iterations)

$$
\begin{aligned}
15 x+2 y+z & =18 \\
2 x+20 y-3 z & =19 \\
3 x-6 y+25 z & =22
\end{aligned}
$$

(ii) Solve the following system of equations by using Gauss Seidal method. (Two iterations)
$5 x-2 y+3 z=18 ;$
$x+7 y-3 z=22 ;$
$2 x-y+6 z=22$.
b) Solve the following system of equations by Gauss Elimination Method.

$$
\begin{aligned}
6 x-y-z & =19 \\
3 x+4 y+z & =26 \\
x+2 y+6 z & =22
\end{aligned}
$$

c) Using Newton - Raphson method find the approximate value of $\sqrt[3]{100}$ (Perform 4 iterations)

