21718

3 Hours / 70 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:
a) State whether the function $f(x)=\frac{e^{x}+e^{-x}}{2}$ is odd or even.
b) If $f(x)=\frac{x^{2}+1}{x^{3}-1}$ find $f\left(\frac{1}{2}\right)$.
c) Find $\frac{d y}{d x}$, if $y=\left(x^{2}+1\right)^{5}$
d) Evaluate $\int(\tan x+\cot x)^{2} d x$
e) Evaluate $\int \log x d x$
f) Find the area between the lines $y=3 x, x$-axis and the ordinates $x=1$ and $x=5$.
g) Show that there exists a root of the equation $x^{2}-2 x-1=0$ in $(-1,0)$ and find approximate value of the root by using Bisection method. (Use two iterations)
2. Attempt any THREE of the following:
a) Find $\frac{d y}{d x}$ if $\cos \left(x^{2}+y^{2}\right)=\log (x y)$
b) If $x=a \cos ^{3} \theta$ and $y=a \sin ^{3} \theta$ find $\frac{d y}{d x}$ at $\theta=\pi / 4$
c) Find maximum and minimum values of $2 x^{3}-3 x^{2}-36 x+10$.
d) A beam is bent in the form of the curve $y=2 \sin x-\sin 2 x$

Find the radius of curvature of the beam at the point $x=\pi / 2$.
3. Attempt any THREE of the following:
a) Find the points on the curve $y=x^{3}+3 x^{2}-9 x+7$ at which tangents drawn are parallel to x-axis.
b) Differentiate $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ w.r.t. $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
c) Find $\frac{d y}{d x}$ if $y=(\log x)^{x}+x^{\cos ^{-1} x}$
d) Evaluate : $\int \frac{\sec x \operatorname{cosec} x}{\log \tan x} d x$
4. Attempt any THREE of the following: 12
a) Evaluate : $\int \frac{1}{2 x^{2}+3 x+1} d x$.
b) Evaluate $: \int \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x$
c) Evaluate : $\int x \operatorname{cosec}^{-1} x d x$
d) Evaluate : $\int \frac{1}{x(2-\log x)(2 \log x-1)} d x$
e) Evaluate : $\int_{1}^{4} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x}+\sqrt[3]{x+4}} d x$
5. Attempt any TWO of the following:
a) Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}$ about x-axis.
b) Attempt the following:
(i) Form the differential equation by eliminating the arbitrary constants if $y=a \cos (\log x)+b \sin (\log x)$
(ii) Solve the differential equation:

$$
\frac{d y}{d x}+y \tan x=\cos ^{2} x
$$

c) In a single closed electrical circuit the current ' I ' at time t is given by $\mathrm{E}-\mathrm{RI}-\mathrm{L} \frac{d I}{d t}=0$. Find the current I at time t , given that $t=0, \mathrm{I}=0$ and $\mathrm{L}, \mathrm{R}, \mathrm{E}$ are constants.
6. Attempt any TWO of the following:
a) Attempt the following.
(i) Solve the following system of equations by Jacobi's Iteration method. (Two iterations)
$5 x+2 y+z=12, x+4 y+2 z=15, x+2 y+5 z=20$
(ii) Solve the following system of equations by using GaussSeidal method. (Two iterations)
$15 x+2 y+z=18,2 x+20 y-3 z=19,3 x-6 y+25 z=22$
b) Solve the following system of equations by using Gauss-elimination method $6 x-y-z=19,3 x+4 y+z=26, x+2 y+6 z=22$
c) Find the approximate root of the equation $x^{4}-x-10=0$, by Newton-Raphson method. (Carry out four iterations).

