

MODEL ANSWER

SUMMER-18 EXAMINATION

Subject Code:-

_ 22217

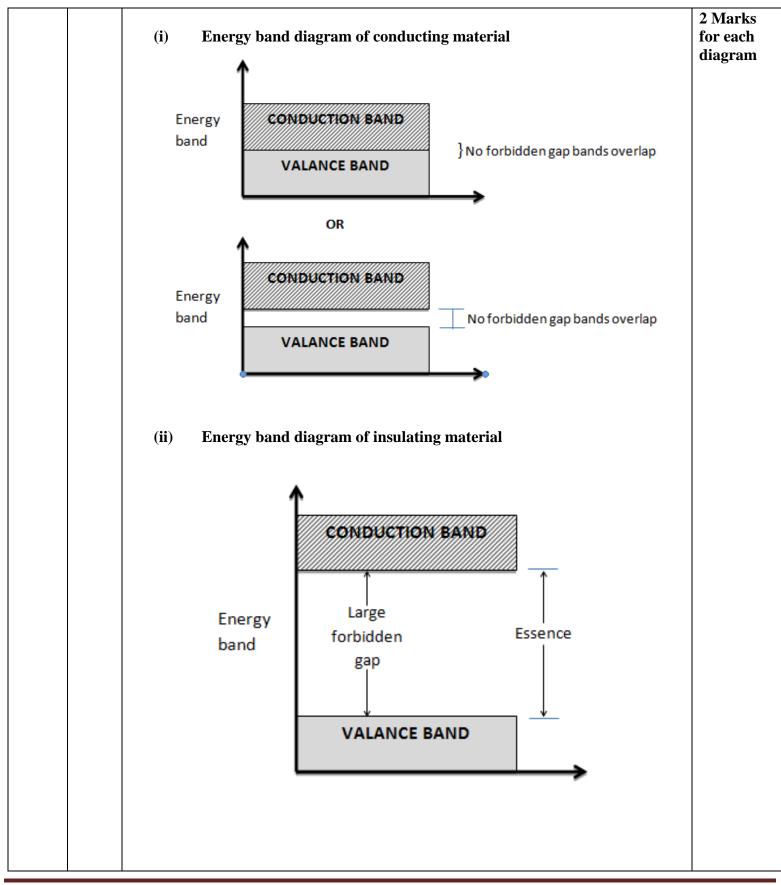
<u>Subject Title</u>:- Electronic Engineering Materials Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Sub Q.N.	Answer	Marking Scheme
	Attempt any FIVE of the following :	10 Marks
a)	Define the term 'Photoelectric emission.	2 Marks
Ans:	Photoelectric emission is defined as "emission of electron from the metal surface, when illuminated by light"	2 Marks
b)	List dielectric materials (any four).	2 Marks
Ans:	i)Mica ii) Porcelain iii)polythene iv)Bakelite v)polyvinyl chloride vi)rubber vii)cotton viii)silk ix)glass x)paper &boards xi)wood xii) enamel covering xiii)transformer oil xiv)polymers.	Any four 1/2 Marks each
c)	Define the term 'Permeability'. State its unit.	2 Marks
Ans:	The capability of the magnetic material to conduct the magnetic flux is known as permeability.	1 Marks
	Unit :H/m or H m-1 (henries per meter),or N.A-2 (Newton per Ampere square)	1 Marks
d)	Sketch energy band diagram of intrinsic semiconductor.	2 Marks
Ans:		2 Marks
	Q.N. a) Ans: b) Ans: c) Ans: d)	Q.N.Attempt any FIVE of the following :a)Define the term 'Photoelectric emission.Ans:Photoelectric emission is defined as "emission of electron from the metal surface, when illuminated by light"b)List dielectric materials (any four).Ans:i)Mica ii) Porcelain iii)polythene iv)Bakelite v)polyvinyl chloride vi)rubber vii)cotton viii)silk ix)glass x)paper &boards xi)wood xii) enamel covering xiii)transformer oil xiv)polymers.c)Define the term 'Permeability'. State its unit.Ans:The capability of the magnetic material to conduct the magnetic flux is known as permeability. Unit :H/m or H m-1 (henries per meter),or N.A-2 (Newton per Ampere square)d)Sketch energy band diagram of intrinsic semiconductor.

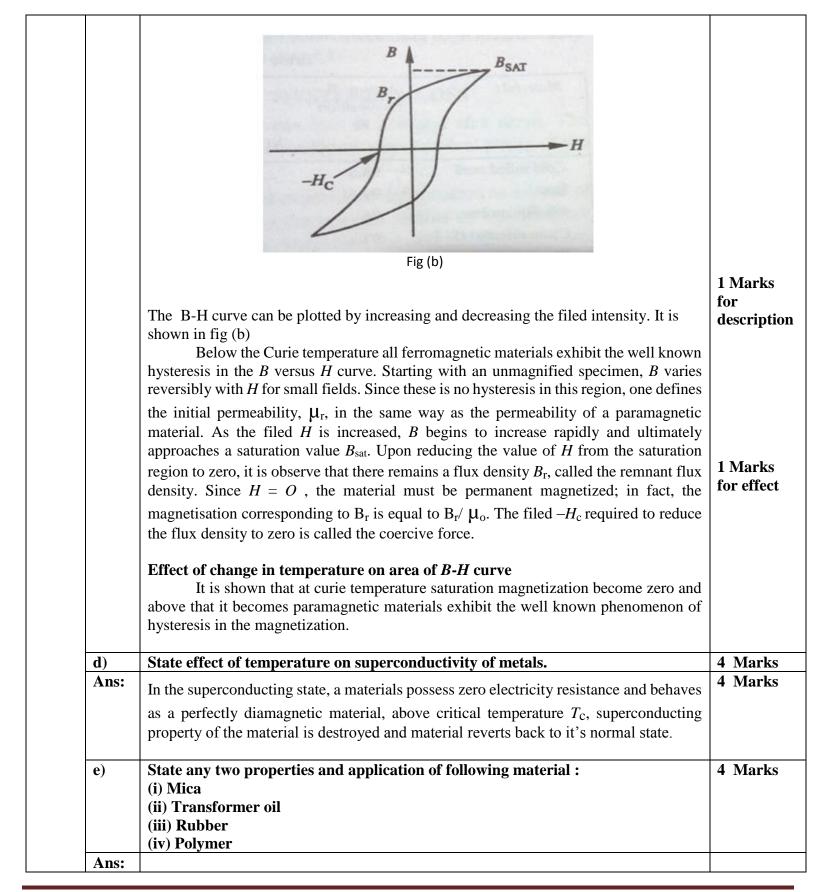
		Conduction band J Small forbidden gap Eq=1eV Kalence band	
	e)	List electrical conducting material (any four).	2 Marks
	Ans:	Copper, gold ,silver ,aluminum , mercury ,steel, iron, sea water	1/2 marks each
	f)	'Pentavalent impurity materials are called as Donor impurity.' Justify your answer.	2 Marks
	Ans:	Pentavalent impurity materials like Arsenic ,phosphorus and Antimony has 5 valence electron ,out of which four are utilized in bonding with intrinsic semiconductor like silicon or germanium and the one electron left is donated to act as charge carrier hence, Pentavalent impurity materials are called as Donor impurity.'	2 Marks
	g)	State working principle of LED.	2 Marks
	Ans:	LED works on the principle of "electroluminescence" In electroluminescent materials, which are semiconductors the energy of an electric filed produces a localized high free charge carrier density and light is emitted when the free charge carrier combine.	1 Marks 1 Marks
Q 2		Attempt any THREE :	12 Marks
	a)	State the effect of following factors on resistivity of electrical conducting material :(i) Temperature (ii) Alloying (iii) Cold work (iv) Age Hardening	4 Marks
	Ans:	(i)Temperature: As the temperature increases the resistivity of material increases, hence conductivity decreases.	1 Marks 1 Marks
		(ii) Alloying: Addition of another metal to a pure metal will increase the resistivity considerably hence conductivity decreases.	1 Marks
		(iii) Cold work: Mechanical distortion taking place in metal increases resistivity of a metal thereby decreasing the conductivity.	1 Marks

b)	State four selection factors for selecting an insulating material.	4 Marl		
Ans:	Four selection factors for selecting an insulating material are i)Electrical ii)Mechanical iii)Thermal iv)Chemical			
	i) Electrical factor: A good insulating material should have high resistivity and low leakage current. It should have high dielectric strength and small dielectric loss.	1 Mark		
	ii) Mechanical factor: A good insulating material should have sufficient mechanical strength to withstand vibrations.	1 Mark		
	iii) Thermal factor: A good insulating material should have small thermal expansion to avoid damages, It should be non ignitable and self extinguishable.			
	iv) Chemical factor: A good insulating material should be resistant to oils, gas, fumes acids and alkalies. It should not absorb water as water reduces insulation resistance and dielectric strength.	1 Mark		
c)	Describe the effect on the capacitance of the dielectric material on the basis of factors polarizability and permittivity.	4 Marl		
Ans:	 The function of a capacitor is to store charge. its capacity to store charge is measured in terms of capacitance (C) The presence of dielectric material between the two conducting material in capacitor helps the capacitor to store charge or else the circuit gets completed and current starts flowing. When electric field is applied across the dielectric material ,the electrons of atoms are 	2 Mark		
	acted upon by the electric field and are displaced in a direction opposite to that of electric field this results in seperation of positive and negative charges hence dipoles are created in the dielectric material and said to be polarized			



	$- g_{0} + g_{0} - g_{0} + g_{0}$ $- g_{0} + g_{0} + g_$	
	- Nacuum $\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ + \\ + \\ - \\ - \\$	2 Marks
	C = Q V But $C \propto A$ d d d d d d d d	
	for vacuum dielectric Co = Eo A for vacuum dielectric Co = Eo A	
	where $E = Absolute permittivity of solid additional dielectric E_0 = Absolute permittivity of Vacuum dielectric c_0 = \frac{E}{Co} = \frac{E}{E_0}\frac{C}{Co} = E_r (Relative permittivity of Co) - C_r = C_r (Relative permittivity of Co) - C_r = C_r (Relative permittivity of C_r) - C_r = C_r (Relative permittivity c_r$	
d)	Describe Peltier thermoelectric effect. State its application.	4 Marks
Ans:	 Thermoelectric effect deals with relation between heat and electrical energy. The motion of electron gets altered by the flow of current or temperature gradient. This is the basis of thermoelectric effect. 	3 Marks

		 When a current is passed through the junction of two different metals then heat is absorbed or liberated depending on the direction of current this effect is called as Peltier effect. The heat is called as Peltier heat. Peltier heat is reversible which means that the absorption can be changed to liberation by reversing the direction of current. Application: This effect is used in Refrigeration 			1 Marks
Q. 3		Attempt any THREE :			12 Marks
	a)	Compare P-type semiconductor with N-type semiconductor on the basis of (i) Majority charge carrier (ii) Minority charge carrier (iii) Impurity material (iv) Fermi-level position in energy band diagram.			
	Ans:				1 marks for
		(i) Majarity shares	P-type semiconductor Holes	N-type semiconductor Electron	each point
		(i) Majority charge carrier	Holes	Electron	
		(ii) Minority charge carrier	Electron	Holes	
		(iii) Impurity material	Trivalent such as Boron, calcium Indium etc	Pentavalent such as Phosphorous antimony arsenic	
		(iv) Fermi-level position in	Fermi level lies towards	Fermi levels lies towards	
		energy band diagram.	valance band	conduction band	
	b)	List specifications of micro r	alay (any four)		4 Marks
	Ans:	specifications of micro relay			1 marks for
		1) Contact arrangement			each point
		2) Limiting making current			
		3) Limiting breaking current			
		4) Overload current			
		4) Overload current			
	c) Sketch energy band diagram of conducting and insulating material and label it well.			4 Marks	
	Ans:				



d)	Sketch orientation of spins in paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic material	4 Marks
d) Ans:	Sketch orientation of spins in paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic material. (i) Paramagnetic	4 Marks 1 Marks for each diagram
	Spins are aligned antiparallel but do not cancel	
Q.4	Attempt any THREE : State any two characteristics of	12 Marks4 Marks
a)	State any two characteristics of (i) Electro-textile (ii) Textile-antenna used for wearable antenna.	4 Marks
Ans:	Characteristics of :- i. Electro-textile 1) They have excellent radio frequency performance	Any two characteris tics-

	2) They get more and more attention for body centric communication3) They adopt woven pattern	1 Mark each
	 ii. Textile-antenna The bandwidth of these antennas is between 2.52 GHz to 13.35 GHz Textile materials get easily integrated into clothes and other wearable devices It has very low dielectric constant that reduces the surface wave losses. Increases the impedance bandwidth for the antenna. 	Any two characteris tics- 1 Mark each
b)	Describe the concept of ferroelectricity. State its applications.	4 Marks
Ans:	Concept of Ferro electricity:- Ferro electricity is the property of certain materials, that exhibit spontaneous electric polarization i.e. separation of positive and negative electric charge. Making one side of the positive and opposite side negative that can be reversed in direction by the application of an electric field. It contains small	2 Marks for concept
	region which are polarized in different electronics filed. The Ferro electricity bears a close analogy to ferromagnetism.	2 Marks for applicatior
	It is used in condensers to concentrate considerable quantities of electric energy within a small space.	
c)	Describe with sketch B-H curve. State effect of change in temperature on area of B—H curve.	4 Marks
Ans:	$H = \frac{B}{Bm}$ $H = $	2 Marks for diagram
	OR	

		(i) Mica	
		Properties	1 Marks
		1. It is excellent insulation properties	for any two
		2. It release water when heated	properties
		3. It has inorganic mineral material	
		 <u>Applications</u> 1. It is used in radio circuits, capacitor, radio tubes, segment insulation etc. 2. It is used in high voltage machines, traction motors, switches, plugs, fuse, holder, 	1 Marks for any two apllications
		parts of sockets etc.	
		(ii) Transformer oil	
		<u>Properties</u>	
		It has higher resistivity	
		Let has small viscosity	
		3. It has low density	
		<u>Applications</u>	
		1. It is used for impregnation	
		 It is used high voltage transformers, capacitors. 	
		2. It is used high voltage transformens, eupactors.	
		(iii) Rubber	
		Properties	
		1. It is an elastic substance	
		2. The vulcanized rubber is stretchable and elastic	
		3.	
		Application	
		1. It is used in flexible wires, jack cards and installation wires	
		2. It is used in manufacturing tubes, tyres etc.	
		(iv) Polymer	
		Properties	
		1. It can be molded	
		2. It has ability to soften and even melt	
		Application	
		1. It is used to produce yarns, cloths and films	
		2. The synthetic resins are popular in the electrical installations.	
0.5			12 Ma
Q.5		Attempt any TWO :	12 Marks
	a)	The resistivity of pure copper is $1.56 \ \mu.\Omega$ -cm. An alloy of copper containing 1 atomic percent nickel has a resistivity of $2.81 \ \mu.\Omega$ -cm. An alloy of copper containing 3 atomic percent silver has a resistivity of $1.98 \ \mu.\Omega$ -cm. Calculate the resistivity of copper alloy containing 2 atomic percent nickel and 2 atomic percent silver.	6 Marks

Ans:	
Solution: - Resistivily of pure copper (Scu) Scu = 1.56 M. D. cm (
Resistivity of alloy of copper and ralomic Nickel = 2.81 / r.cm (gr.	
ie S(iu+Ni) = 2.81 MJcm	2 Marks
· · · · · · · · · · · · · · · · · · ·	2M)
3NI? = 1:25 M-2 cm	
Alloy of copper containing 3 alomic percent silver.	has
XISISTIVITY 4	
RA A ANSAG = 110	
$\frac{16}{1.56 + 3x} \frac{8}{8} \frac{1.98}{2} = \frac{1.98}{2} $ $S_{Ag} = \frac{1.98 - 1.56}{2}$ (2)	- M) 2 Marks
BAg = 0.14 U.D. cm	
To calculate resistivity of copper alloy no calculate resistivity of copper alloy	omie
containing 2 ment of percent Schere $= 8cu + 2 \times S_{NP} + 2 \times S_{Ag}$ $\frac{8}{(u+Ni+Ag)} = 1.56 + 2 \times 1.25 + 2 \times 0.1$ 1.56 + 2.5 + 0.28 $\overline{(S_{u+N1+Ag)}} = 4.34 \times 0.2$	(2M)
(u+Ni+Ag) - 1:56 + 2x 1:25 + 2x 0"	4 · 2 Marks
110 156+2.5+ 0.28	
(Saut NI + Mg) = 4.34 M - 2 CM	
b) Classify-following material as diamagnetic, paramagnetic, ferromagnetic, ferro	etic and 6 Mark
anti-ferromagnetic : (i) Platinum	
(ii) Iron (iii) Glass	
(iv) Nickel oxide	
(V) Quartz	

		(vi) Silicon Iron allow		
	Ans:	(vi) Silicon Iron alloy		1 Marks
	Alls:	Materials	Classification	each
		(i) Platinum	Paramagnetic	cach
		(i) Flathlun (ii) Iron	Ferromagnetic	
		(iii) Glass	Diamagnetic	
		(iv) Nickel oxide	Anti -ferromagnetic	
		(V) Quartz	Diamagnetic	
		(vi) Silicon Iron alloy	Ferromagnetic	
	c)		ss of dielectric material, permittivity on	6 Marks
		capacitance of a capacitor.	· ·	1 3 4 1
	Ans:	The capacitance of capacitor in vacuur	-	1 Marks
			$Co = \frac{Qo}{V}$	
		The capacitance of a capacitor in solid	V	
		The capacitance of a capacitor in solid	-	
			$C = \frac{Q}{V}$	
		The capacitance of a parallel plate capacitor is given as		
			6	2 Marks
			$C = \frac{\varepsilon A}{d}$	
		Where	u	
			metal plates and it is directly proportional to	1 Marks
		capacitance. As "A" increases Capacitance is also increases.		
		2. "d" is the thickness of dielectric material and it is inversely proportional to		
		 capacitance. As "d" increases Capacitance is also decreases and vice-versa. 3. "ε" is the relative permittivity of free space and it is directly proportional to 		
		capacitance. As " ε " increases "C"		1 Marks
Q.6	A)	Attempt any TWO :		12 Marks
	a)	Explain thermal conductivity and co semiconductor material.	efficient of thermal conductivity in	6 Marks
	Ans:	Thermal conductivity:-		3 Marks
		Thermal conductivity (often denoted k	, λ , or κ) is the property of a material to conduct	
		•	is of the Fourier's Law for heat conduction. In	
			sor property, expressing the anisotropy of the	
		property.		
			n materials of low thermal conductivity than in	
			y. Correspondingly, materials of high thermal	
		-	sink applications and materials of low thermal	
			tion. The thermal conductivity of a material may	
		depend on temperature.		
			onductivity in semiconductor material:-	
			·	
	· · · · · · · · · · · · · · · · · · ·	1		L

		Semiconductors	Thermal Conductivity (k)		3 Marks
		A1C - A -	• • •		
		AlGaAs	90 46 to 55	_	
		GaAs GaN	46 to 55 40 to 130	_	
		Ge	58 to 60		
		InP	68	_	
		Si	140 to 163	-	
		SiC	16 to 55	_	
		510	10 10 55		
b)	Explain hysteres	is loss and eddy current	loss of magnetic mate	erial.	6 Marks
Ans:	 It is also k Hysteresis whenever the core is material consumed cycle is ca Eddy current los When an a induced in induction. circulates are called experience magnetic Similar to magnetic 	f magnetic material:- nown as Iron Loss or Cor- loss is due to the reve- it is subjected to alternation subjected to an alternation will change their orientar by the magnetic domains lled Hysteresis loss. Is of magnetic material:- alternating magnetic field in the material itself accor Since the magnetic material currents within the body I Eddy Currents. Eddy es a changing magnetic field material known as an Edd hysteresis loss, eddy currents material. The hysteresis re also known by the naterial	rsal of magnetization ing nature of magnetiz ing magnetic field, the c ation after every half for changing the orient ding to Faraday's Law erial is a conducting n of the material. These current will occur w field. It produces a le y Current Loss. ent loss also increases t and the eddy current	of transformer core ing force .Whenever lomain present in the f cycle. The power tation after every half ic material an emf is v of Electromagnetic naterial, these EMFs e circulating currents when the conductor oss (I ² R loss) in the he temperature of the losses in a magnetic	3 Marks

	EDDY CURRENTS LAMINATED MAGNETIC CORE H H CRE CRE CRE CRE CRE CRE CRE CRE	Diagram is optional.
c)	Suggest two passive materials used for substrate. metal and capacitance of semiconductor device fabrication. State their two functions.	6 Marks
Ans:	Passive materials (i)Substrate: most widely used substrate are either plastic, glass or ceramic. Functions: i) They are used for deposition of thin films layers. (iii) Plastic substrate is used only for thin film solar cells. (iv) Glass or ceramic are used for deposition of metals for resistors and capacitors	1 Marks (Any 2) 1 Marks (Any 2)
	 (ii)Metals: Commonly used metals are gold,platinium,Aluminiun,Nickel- chromium . Functions: (i) They act as capacitor plates (ii) They are used for resistors 	1 Marks (Any 2) 1 Marks (Any 2)
	(iii) For mechanical support.(iv) As heat dissipater.	
	(iii) Capacitance materials :commonly used capacitance material are SiO,ZnS,SiO ₂ ,TiO2,BaTiO2,MgF2,Ta2O5,Al2O3 Functions :	1 Marks (Any 2)
	 (i) a pin-hole free continuous layer (ii) High dielectric constant (iii) A low loss factor at the desired frequency (iv) Ability to withstand thermal stresses without cracking 	1 Marks (Any 2)