

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

<u>MODEL ANSWER</u> WINTER- 18 EXAMINATION

Subject Title: Basic Electronics (BEL)

Subject Code:

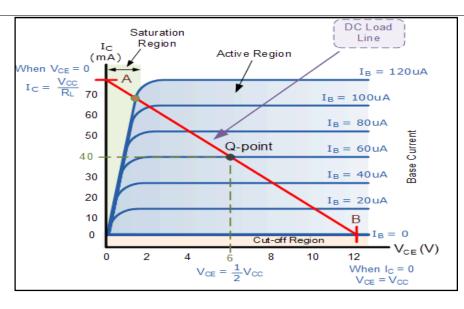
22216

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any FIVE :	10-Total Marks
	a)	Draw the symbol of photodiode.	2M
	Ans:	Anode Cathode	Correct symbol -2M
	b) Define Transistor. State its type.		
	Ans:	Transistors are active electronic components made of semiconducting materials, which can amplify the electric signals by the application of a small input signal. Types of transistors: 1. Unipolar Junction Transistors	Definition - 1M; Types - 1M
		2. Bipolar Junction Transistors	
	c)	Define load and line regulation.	2M
	Ans:	Load regulation is the ability of the power supply to maintain its specified output voltage given changes in the load. Line regulation is the ability of the power supply to maintain its specified output voltage over changes in the input line voltage.	Each definition - 1M

d)	State application of FET.	2M
Ans:	(NOTE: Any other relevant Application mark shall be given) Applications of FET: i. As input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment because high input impedance reduces loading effect to the minimum. ii. Constant current source. They are used to build RF amplifiers in FM tuners and other communication circuits. Because of low noise. iv. FETs are used in mixer circuits of FM and TV receivers as it reduces inter modulation distortion. v. Used as Analogue switch. vi. As a Voltage Variable Resistor (VVR) in operational amplifiers.	Any two application (1M each)
e)	Sketch energy band diagram of semiconductor.	2M
Ans:	Energy band diagram for N type semiconductor: Conduction energy band Increased electrons due to denor waterial Valence Energy Band Energy band diagram for P type semiconductor: Conduction Band Fermi level Valence Band Truccas ed notes due to note due to notes due to note due	Any one correct diagram - 2M


	f)	f) State the need of DC regulated power supply.			2M	
	Ans:		C into constant DC. n supply into regulated consta	nt DC.	Any one relevant need - 2M	
	Name the components of following symbol: G (i) (ii)				2M	
	Ans:	(i) N-channel Enhancement t (ii) N-channel Depletion type	MOSFET		Each correct answer -1M	
Q. 2		Attempt any THREE of the following:				
	a)	Compare PN junction diod	e & Zener diode. (four point	s).	4M	
	Ans:	Parameter	PN junction diode	Zener diode	Each point -	
		Symbol	→ >	- -	1M	
		Direction of Conduction	Conducts only in one direction	Conducts in both directions		
		Reverse breakdown	It has no sharp reverse breakdown	It has quite sharp reverse breakdown		
		Application	Used in rectification	Used in regulation		
		Resistance in reverse biased condition	Very high	Very small		
		Characteristics	reverse voltage The state of t	Breakdown Voltage, Vz Leakage Current Voltage Avalanche Current Reverse Voltage		

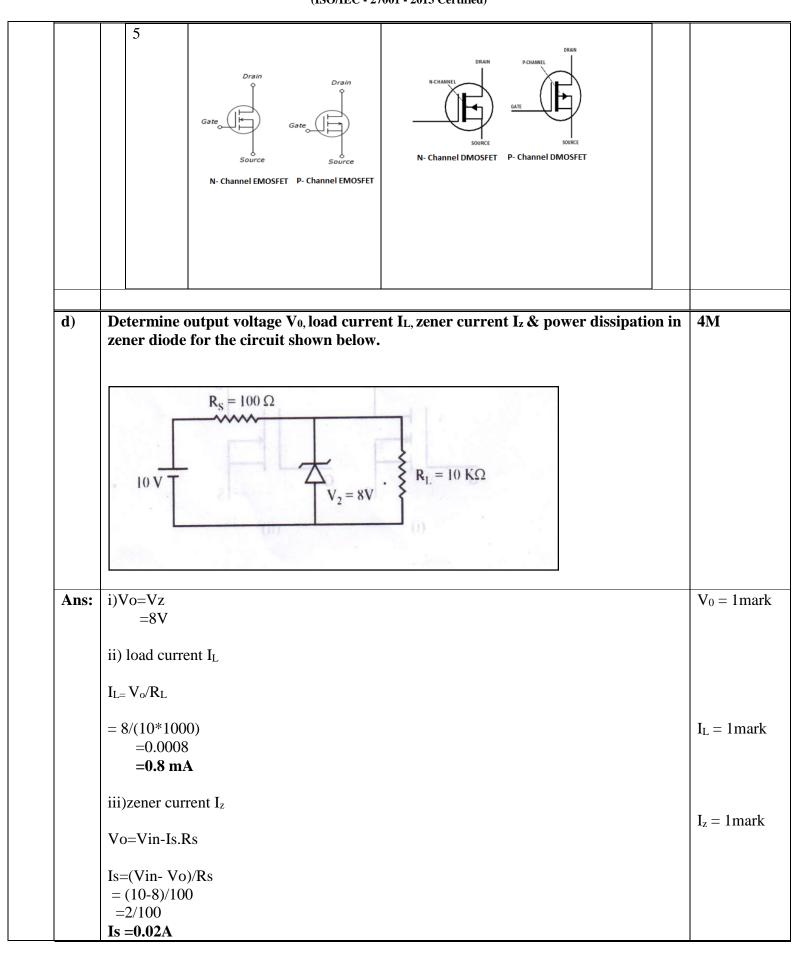
b)	Explain with a neat circuit diagram of voltage divider bias method for biasing a transistor.	4M		
Ans:	The voltage divider is formed using external resistors R_1 and R_2 . The voltage across R_2 forward biases the emitter junction. By proper selection of resistors R_1 and R_2 , the operating point of the transistor can be made independent of β . In this circuit, the voltage divider holds the base voltage fixed independent of base current provided the divider current is large compared to the base current. The voltage at transistor base, $V_B = V_{CC} \times \frac{R_2}{R_1 + R_2}$ Neglecting V_B , The emitter current = $I_E = \frac{V_E}{R_E}$ $V_{CE} = V_{CC} - I_C \cdot R_C - I_E \cdot R_E$			
c)	Draw the block diagram of DC power supply. Explain the function of each block.	4M		
Ans:	Transformer: It reduces the amplitude of ac voltage to the desired level and applies it to a rectifier circuit. Rectifier: This circuit converts the voltage at the secondary of the transformer into a pulsating dc voltage. Filter: This circuit reduces the ripple content in the pulsating dc, producing unregulated dc voltage. Regulator: This circuit converts the unregulated dc voltage into regulated constant dc voltage. Explain the concept of DC load line and oprating point.	Diagram - 2M Functions - 2M		
		1M		
Ans:	$ \begin{array}{c} $			

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Operating

1M

point or Q- point: The fixed levels of certain currents and voltages in a transistor in active region defines the operating point on the DC load line. For normal operation of the transistor, the Q- point is to be selected at the center of the load line.


Q. 3		Attempt any THREE of the following:	12-Total Marks
	a)	An AC supply of 230 V is applied to HWR through a transformer with turns ratio	4M
	,	10:1. Find Average DC output, Voltage current and PIV of diode, RMS value of	
		voltage and current.	
	Ans:	Vrms=230V, np/ns=10/1	
		Max primary voltage is	
		$Vp=\sqrt{2}*Vrms$	
		$=\sqrt{2}$ * 230	
		=325.22Volt	
		The max secondary voltage is Vm=ns/np*Vp=	
		=1/10*325.22	
		=32.52V	
		V average=Vdc=Vm/π	Vdc =
		=32.5/ 3.14	1 Mark
		=10.35V	
		PIV=Vm= 32.52V	
		Vrms=Vm/2	
		=32.52/2	PIV =
		=16.25V	1 Mark
		Idc=Im/π	
		Irms= Im/2	
		Assume $R_{L=}10K\Omega$ - (Note - Students may assume any value and attempt to solve, can be considered)	

	Im=Vm/R _L =32.52/10 = 3.25mA Idc=Im/π =3.25*10 = 1.03 m A Irms=Im/2 =3.25*1 = 1.62 m	e^{-3}/π $e^{-3}/2$		Idc = 1 Mark Irms = 1 mark
b)			s with reference to full wave rectifier:	4M
	(i) (iii	• •) Efficiency v) P/V	
		`	*) 1 , V	
Ans:	(i) (ii) (iii) (iv)	TUF -69.3 or 81.2		1 mark each parameter
	Compare E	MOSFET & DMOSFET.		4M
Ans:	Sr. No.	E MOSFET	DMOSFET	Any Ancint
	1	Insulating oxide layer is present between gate and substrate channel is absent. At the operation induced channel get created.	An insulating oxide layer is present between G & channel n or p-type channel is present.	Any 4 point – 1mark each
	2.	For n- channel EMOSFET V_{GS} will be only positive.	For an n-channel DMOSFET, the V _{GS} can be negative for depletion mode & positive for Enhancement mode	
	3	For an n-channel EMOSFET I_D increases as V_{GS} becomes more and more positive	For an n-channel DMOSFET I_D decreased as V_{GS} becomes more and more negative.	
	4	For an n-channel EMOSFET $I_D = 0$ for $V_{GS} \le V_T(V_{GSTh})$	For an n-channel DMOSFET $I_D = 0$ for $ V_{GS} \ge V_P$	

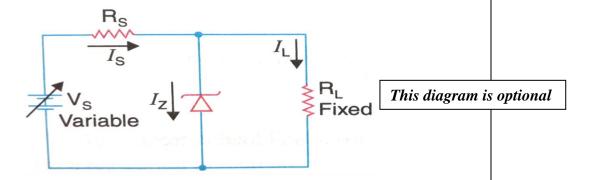
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

			(180)/IEC - 27001 - 2013 Ce	ertifiea)		
		Is=Iz+I _L Iz=Is- I _L =0.02 - 0.0008 = 0.0192A iv)Power dissipate =V _L * I _L = 8* 0.0008 = 0.0064 = 6.4mW					Power dissipation = 1mark
Q. 4		Attempt any TH	REE of the follow	wing:			12-Total
	a)	Compare L, C, I	$\mathcal L \mathbf C$ and $oldsymbol{\pi}$ filter or	n the basis of usef	ulness in reducin	ng ripple or	Marks 4M
	<u> </u>	suitability for he					
	Ans:	Parameters	L filter	C filter	LC filter	п filter	ripple or
		Ripple	MORE	LESS	LOW	LOWEST	suitability for heavy /
		Suitability for	HEAVY	LIGHT LOAD	HEAVY	LOW LOAD	light load = 1
		heavy / light	LOAD	LIGHT LOAD	LOAD	CURRENT	mark each
		load.	LOND		CURRENT	CORREIVI	point
	b)		ating principle o	f PNP transistor.	0011122111		4M
	Ans:	P 33 3 3 3 P 3	81 1				Diagram – 1
							mark
		ASTRONOUS AND	P	N	Р		Explanation
			000	0 0 0 0	0000	C	= 3marks
		E		0 0 0 0	0000		
				0 0 0 0	0000		
		11	000	0 0 0 0	0000	10 -	
		+T 'E		Bearing .			
		-			A STATE OF THE PARTY OF THE PAR	+	
				, A OB			
				IB!			
		A PNP transistor	biased in active m	ode, i.e. the emitte	er –base (E-B) jun	ction as forward	
				– base (C-B) junct			
				sed only if the emi			
		exceed the barrier transistors.	potential which i	s 0.7 volts for silic	con and 0.3 volts f	or germanium	
		u ansistors.					
		The forward biase	ed on the emitter b	oase (E-B) junction	n causes majority	carriers i.e. holes	
		in the P type emit	ter region to flow	towards the N typ	e base region. Thi	s E-B junction,	
		they tend to comb	ine with the majo	rity carriers i.e. ho	les in the base reg	gion.	

	Most collector current is also injected current because this current is produced due to the holes injected from the emitter region. There is another small component of collector current due to thermally generated carriers. This current component is called reverse	
	saturation current (I_{CO}) and is quite small. In this way, almost entire emitter current flows in the collector circuit, it is clear that the emitter current is the sum of the base current and collector current i.e. $I_E = I_B + I_C$	
c)	Find the Q point values for the following circuit, Assume $V_{BE}=0.7~V~\&~\beta=60$. $R_{B}=290~k\Omega$ $R_{C}=2~k\Omega$	4M
Ans:	Saturation point (or upper end)	
	Active region Cut-off point (or lower end) Collector-to-emitter Vcc voltage (Vcc)	
	By KVL $V_{CE} = V_{CE} - I_{C}.R_{C}$ For point on X axis— $I_{C}=0$ $V_{CE} = V_{CE}=10V$ For point on Y AXIS VCE=0 $I_{C} = V_{CC}/R_{C}$ $= 10/2000$ $= 0.005$ $= 5mA$	Ic = 2ma $V_{CE} = 2marks$
d)	Compare BJT & JFET with reference to following point: i) Symbol ii) Transfer characteristics iii) I/P impendence iv) Application	4M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

1 mark each Ans: **Parameters BJT FET Symbol** output output input npn transistor pnp transistor **Transfer characteristics** i_B (mA) 0.3 $v_{CE} > 1 \text{ V}$ Gate-to-source 1.0 $v_{BE}(V)$ OR OR Non-linear in FET Linear in BJT I/P impedance Low High **Application** Amplifier and Switch Amplifier and Switch Describe the working of Zener diode as a voltage regulator with reverse **4M** e) characteristics of zener diode 2 marks Ans: diagram 2 marks explanation Unregulated Regulated voltage voltage **Circuit Description** As the zener diode is connected in parallel or shunt with the load hence it is also known as SHUNT REGULATOR. A resistance (Rs) is connected in series with the zener diode to limit current in the circuit. For proper operation, the input voltage(Vs) must be greater than the zener voltage(Vz). $Is = \frac{Vs - Vz}{Rs}$ $V_L = V_Z + I_Z R_Z$ Where. Rz= zener resistance


(Autonomous)

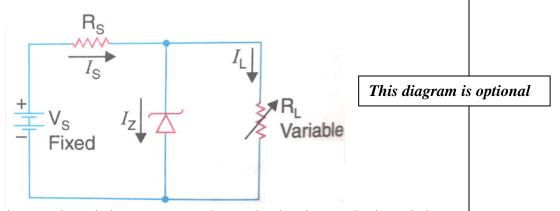
(ISO/IEC - 27001 - 2013 Certified)

$$I_L = \frac{V_L}{R_L}$$
$$Is = Iz + I_L$$

WORKING OF ZENER DIODE SHUNT REGULATOR

A] REGULATION BY VARYING INPUT VOLTAGE

Here the load Resistance is kept fixed and input voltage is varied within the limits


CONDITION 1. WHEN INPUT VOLTAGE IS INCREASED

When input voltage is increased the input current (Is) also increases. Thus current through zener diode gets increased without affecting the load current(IL). The increase in input voltage also increases the voltage drop across the resistance Rs thereby keeping the VL constant.

CONDITION 2. WHEN INPUT VOLTAGE IS DECREASED

When input voltage is decreased, the input current gets reduced, as a result of this Iz also decreases. The voltage drop across Rs will be reduced and thus the load voltage (V_L) and load current(I_L) remains constant.

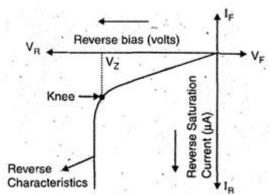
B] REGULATION BY VARYING LOAD RESISTANCE

In this method the input voltage is kept constant whereas load resistance R_L is varied.

CONDITION 1. WHEN LOAD RESISTANCE IS INCREASED

When load resistance is increased, the load current reduces, due to which the zener

		(150/1EC - 27001 - 2015 Certified)	
		current I_Z increases. Thus the value of input current and voltage drop across series resistance is kept constant. Hence the load voltage remains constant.	
		CONDITION 2. WHEN LOAD RESISTANCE IS REDUCED	
		When load resistance is decreased, the load current increases. This leads to decrease in Iz. Because of this the input current and the voltage drop across series resistance remains constant. Hence the load voltage is also kept constant.	
Q.5		Attempt any TWO of the following:	12-Total Marks
	a)	With neat circuit diagram and mathematical expressions, explain the self-biasing used in F.E.T.	6M
	Ans:	 In this circuit there is only one drain supply and no gate supply. The gate terminal is connected through resistor R_G to the ground. The source terminal is connected through resistor R_S to the ground. {NOTE: In JFET input PN junction between gate & source is always reverse bias, due to this input resistance of JFET is very high. Due to this input gate current I_G = zero. Hence if resistor R_G is connected in series with gate terminal, voltage drop across R_G is zero as V_{RG} = I_G R_G = 0} V_G = I_G R_G = 0 V_G = V_G - V_S = -V_S APPLY KVL TO INPUT LOOP V_{GS} + I_DR_S = 0 ∴ V_{GS} = -I_DR_S I_D = I_DS_S {1.	Circuit Digram:3M Explanation: 1M Mathematic al expression:2 M


	(ISO/IEC - 27001 - 2013 Certified)			
	$= V_{DD} - I_D [R_D + R_S]$			
b)	Identify the following circuit shown in Fig. No. 1 and draw input and output waveforms.	6M		
	t-values for the tollowing regult. Assur			
	↑° 1			
	$V_{p-p} = 10 \text{ V}$			
	$y_0 = y_0$			
	¥° *			
	$\mathfrak{L}_{\mathfrak{L},\mathfrak{L}}=\mathfrak{L}_{\mathfrak{L}}$ Fig. 1			
	<u>↑ c </u>	Circuit		
Ans		Identificati :2M		
	$V_{p-p}=10V$ D V_0 Assume Ideal Diode	Input, outp		
	↓	waveform:		
	Ckt is Positive Diode Clamper			
	+V +V			
	+5 V _m +10 V _m			
	-5 V _m +5 V _m			
	Input Waveform Output Waveform			
	Output Waveform			
c)	Explain V-I characteristics of zener diode.	6M		
Ans:		Forward		
	Forward characteristics of Zener diode:	characteri cs of Zene		
	₹ /	diode: 2M		
		Reverse characteri		
	1 3 P	cs of Zene		
	Forward current (mA)	diode: (2N Draw and		
	Forward bias (volts)	2M		
	↓ J _R	Description		
	This characteristic is similar to that of an ordinary silicon P-N junction diode.			
	This indicates forward current is very small for voltages below knee voltage (VK =			

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

0.7V) and large for voltages above knee voltage.

Reverse characteristics of Zener diode:

- Fig above shows the reverse portion of V-I characteristics of the zener diode.
- As the reverse voltage (V_R) is increased the reverse current (I_Z) remains negligibly small up to the 'Knee' of the curve.
- At this point the effect of breakdown process begins.
- From the bottom of the knee, the breakdown voltage or Zener voltage (V_Z) remains essentially constant.
- This ability of a diode is called regulating ability and is an important feature of Zener diode.
- Following two points are important from the characteristics of a Zener diode.
- There is a minimum value of Zener current called "break over current" designated as I_{ZK} or I_{Z} (min) which much be maintained in order to keep the diode in regulation region.

There is a maximum value of Zener current designated as I_{ZM} or $I_{Z}(max)$ above which the diode may be damaged.

Q.6		Attempt any TWO:	12-Total Marks
	a)	Draw the characteristics of LED and write advantages, disadvantages and application of it. (each two points)	6M
	Ans:	V-I characteristics of LED:	V-I
		Reverse voltage Leakage current characteristics of	characteristi cs of LED:3M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

ADVANTAGES: (Any Two Points)

• Efficiency: LEDs emit more lumens per watt than incandescent light bulbs.

- Color: LEDs can emit light of an intended color. This is more efficient and can lower initial costs.
- **Size:** LEDs can be very small (smaller than 2 mm²) and are easily attached to printed circuit boards.
- **On/Off time:** LEDs light up very quickly. LEDs used in communications devices can have even faster response times.
- **Dimming:** LEDs can very easily be dimmed either by pulse-width modulation or lowering the forward current.
- Cool light: In contrast to most light sources, LEDs radiate very little heat.
- **Slow failure:** LEDs mostly fail by dimming over time, rather than the abrupt failure of incandescent bulbs.
- **Lifetime:** LEDs can have a relatively long useful life. product.
- **Shock resistance:** LEDs, being solid-state components, are difficult to damage with external shock, unlike fluorescent and incandescent bulbs, which are fragile.
- Focus: The solid package of the LED can be designed to focus its light.

Disadvantages (Any Two Points):

- **High initial price:** LEDs are currently more expensive (price per lumen) on an initial capital cost basis, than most conventional lighting technologies.
- **Temperature dependence:** LED performance largely depends on the ambient temperature of the operating environment or "thermal management" properties.
- **Voltage sensitivity:** LEDs must be supplied with the voltage above the threshold and a current below the rating. Current and lifetime change greatly with a small change in applied voltage.
- **Light quality:** Most cool-white LEDs have spectra that differ significantly from a black body radiator like the sun or an incandescent light.
- **Area light source:** Single LEDs do not approximate a point source of light giving a spherical light distribution.
- **Efficiency droop:** The efficiency of LEDs decreases as the electric current increases. Heating also increases with higher currents which compromise the lifetime of the LED.
- **Impact on insects:** LEDs are much more attractive to insects.
- Use in winter conditions: Since they do not give off much heat in comparison to traditional electrical lights, LED lights used for traffic control can have snow obscuring them, leading to accidents.

Applications of LED (Any Two Points)::

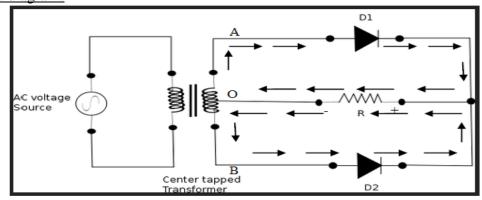
- As a power indicator.
- In seven segment display.
- In the opto-couplers.
- In the infrared remote controls.

Advantages: 1M (2Points)

Disadvantag es: 1M (2Points)

Application: 1M (2Points)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)


b) Draw circuit and describe working of full wave rectifier using center tapped transformer with waveforms.

Ans: Full wave Rectifier with Center tapped transformer(FWR):

• In full wave rectification, the rectifier conducts in both the cycles as two diodes are connected.

Circuit Diagram:2 M

Circuit diagram:

The circuit employs two diodes D1 and D2 as shown. A center tapped secondary winding AB is used with two diodes connected. So that each uses one half – cycles of input AC voltage.

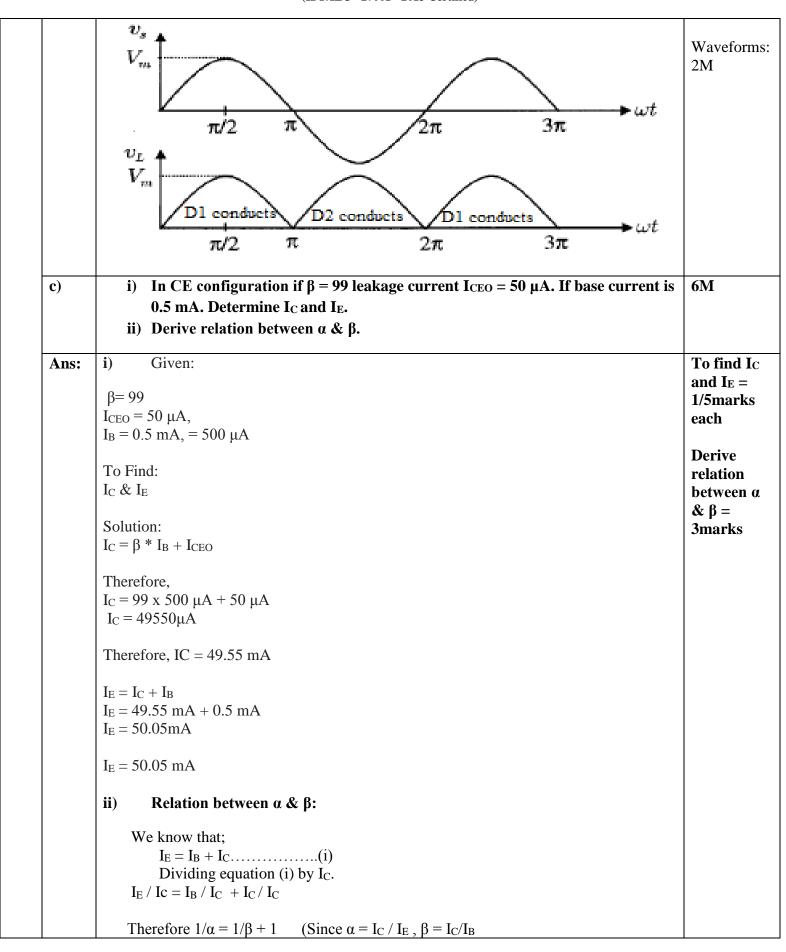
Description: 2M

- Diode D1 utilized the AC voltage appearing across the upper half (OA), while diode D2 uses the lower half winding (OB).
- The voltage V_s between the center-tap and either ends of secondary winding is half of the secondary voltage V_2 i.e $V_s = \frac{V_2}{2}$
- If the output voltage should be equal to the input voltage, a step up transformer with turns ratio $\frac{N_2}{N_1} = 2$ must be used. Thus the total secondary voltage V_2 is twice the primary voltage.

i.e,
$$V_s = V_1 = \frac{V_2}{2}$$

Operation:

- 1. In positive half cycle $(0-\Pi)$.
- The end A of the secondary winding becomes positive and end B negative.
- This makes diode D1 forward biased and diode D2 reverse biased. Therefore D1 conducts while D2 does not.
- The conventional current flow direction in the upper half winding as shown in the fig above.


$$A - D1 - RL - O$$

- 2. In negative half cycle (Π -2 Π):
- End A of secondary winding becomes negative and end B positive. Therefore diode D2 conducts while diode D1 does not.
- The conventional current flow is from as shown by the arrows in the above fig.

$$B - D2 - RL - O$$

• From fig. current in the load RL is in the same direction for both half-cycles of input AC voltage. Therefore DC is obtained across the load RL.

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Therefore	$1/\alpha$	=	<u>1+β</u>
			β

Therefore
$$\alpha = \frac{\beta}{1+\beta}$$

$$\alpha(1+\beta) = \beta$$

$$\alpha + \alpha\beta = \beta$$

Therefore
$$\alpha = \beta - \alpha\beta$$

Therefore
$$\alpha = \beta (1 - \alpha)$$

Therefore
$$\beta = \frac{\alpha}{1-\alpha}$$