3 Hours / 70 Marks

\square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following:
a) If $f(x)=3 x^{2}-5 x+7$ show that $f(-1)=3 f(1)$.
b) State whether the function $f(x)=\frac{x^{3}-3 x}{x^{2}+4}$ is even or odd.
c) Find $\frac{d y}{d x}$ if $y=\frac{x+1}{x-1}$
d) Evaluate $\int \frac{1}{\sin ^{2} x \cdot \cos ^{2} x} d x$
e) Evaluate $\int \frac{(1+\sqrt{x})^{2}}{\sqrt{x}} d x$
f) Find the area under the curve $y=x^{2}$ from $x=0$ to $x=3$ with X -axis.
g) Express $Z=\frac{1}{2}+\frac{\sqrt{3}}{2} i$ in polar form.
2. Attempt any THREE of the following:
a) Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=x y$.
b) If $x=3 \sin 4 \theta, y=4 \cos 3 \theta$ find $\frac{d y}{d x}$.
c) A beam is bent in the form of the curve $y=2 \sin x-\sin 2 x$.

Find the radius of curvature of the beam at $x=\frac{\pi}{2}$.
d) In a potentiometer circuit R is given by $\mathrm{R}=\frac{1}{x}-\frac{1}{x-a}$ where "a" is constant. Find the value of x which makes R minimum. Also calculate the minimum value of R .
3. Attempt any THREE of the following:
a) Find the equation of tangent and normal to the curve $4 x^{2}+9 y^{2}=40$ at $(1,2)$.
b) If $y=\log (\sec x+\tan x)$ find $\frac{d y}{d x}$.
c) Find $\frac{d y}{d x}$ if $y=x^{x}+(\cos x)^{x}$
d) Evaluate $\int \frac{\cos x}{1+\sin ^{2} x} d x$
4. Attempt any THREE of the following:
a) Evaluate $\int \frac{1}{\sqrt{3-x-x^{2}}} d x$
b) Evaluate $\int \frac{d x}{2+3 \cos x}$
c) Evaluate $\int x \cdot \tan ^{-1} x d x$
d) Evaluate $\int \frac{x}{x^{2}+3 x-4} d x$
e) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cot x} d x$
5. Attempt any TWO of the following:
a) Find the area between the parabola $y^{2}=2 x$ and $x^{2}=2 y$.
b) i) Find the order and degree of differential equation

$$
\frac{d^{2} y}{d x^{2}}=\left(y+\frac{d y}{d x}\right)^{\frac{3}{2}}
$$

ii) Solve $(x+1) \frac{d y}{d x}-y=e^{x}(x+1)^{2}$
c) In a closed circuit, the current "I" at time t is given by $\mathrm{E}-\mathrm{RI}-\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}=0$. Find the current I at time t , given that at $\mathrm{t}=0, \mathrm{I}=0$ and $\mathrm{L}, \mathrm{R}, \mathrm{E}$ are constants.
6. Attempt any TWO of the following:
a) i) Express $\frac{(2+i)^{2}}{2+3 i}$ in the form $x+i y$.
ii) Find $L\left[t^{2} \cdot \mathrm{e}^{3 \mathrm{t}}\right]$
b) Find $\mathrm{L}^{-1}\left[\frac{3 S+7}{S^{2}-2 S-3}\right]$
c) Solve the differential equation, $\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{Ri}=\mathrm{V}$ using laplace transform.

