21718

3 Hours / 70 Marks

Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any FIVE of the following:
a) If $f(x)=64^{x}+\log _{3} x$, find $f\left(\frac{1}{3}\right)$
b) If $f(x)=\sin x$, show that $f(3 x)=3 f(x)-4 f^{3}(x)$
c) Find $\frac{d y}{d x}$ if $y=e^{x} \sin ^{-1} x$
d) Evaluate : $\int x(x-1)^{2} d x$
e) Evaluate : $\int \sin ^{2} 2 x d x$
f) Find the area bounded by the curve $y=x^{2}, x$ - axis and ordinates $x=0$ to $x=3$.
g) Express $z=\frac{1-i}{1+i}$ in $a+i b$ form, where $i=\sqrt{-1}$ and a, b are real numbers.
2. Attempt any THREE of the following:
a) If $13 x^{2}+2 x^{2} y+y^{3}=1$, find $\frac{d y}{d x}$ at $(1,-2)$
b) If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$, find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{2}$
c) The rate of working of an engine is given by the expression $10 \mathrm{~V}+\frac{4000}{\mathrm{~V}}$, where V is the speed of the engine. Find the speed at which the rate of working is the least.
d) A telegraph wire hangs in the form of a curve
$y=2 \sin x-\sin 2 x$. Find the radius of curvature of the wire at the point $x=\frac{\pi}{2}$
3. Solve any THREE of the following:
a) Find the equation of the tangent to the curve $y=9 x^{2}-12 x+7$ which is parallel to the x-axis.
b) Find $\frac{d y}{d x}$ if $y=\log \left(\frac{\sin x}{1+\cos x}\right)$
c) If $x^{y}=e^{x-y}$, then prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
d) Evaluate $: \int \frac{\cos x}{1+\sin ^{2} x} d x$
4. Solve any THREE of the following:
a) Evaluate $: \int \frac{\log x}{x(2+\log x)} \frac{d x}{(3+\log x)}$
b) Evaluate : $\int \frac{d x}{3-2 \sin x}$
c) Evaluate : $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
d) Evaluate : $\int \frac{x+1}{x^{2}(x-2)} d x$
e) Evaluate : $\int_{1}^{3} \frac{\sqrt[3]{x+5}}{\sqrt[3]{x+5}+\sqrt[3]{9-x}} d x$

5. Solve any TWO of the following:

a) Find the area enclosed between the parabola $y=x^{2}$ and the line $y=4$.
b) Attempt the following:
(i) Find the order and degree of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left(y+\frac{d y}{d x}\right)^{3 / 2} \tag{2}
\end{equation*}
$$

(ii) Solve : $x \frac{d y}{d x}-y=x^{2}$
c) The current ' i ' is given by $\mathrm{L} \frac{d i}{d t}=30 \sin (10 \pi t)$, where L is inductance and t is time. Find ' i ' in terms of t, given that $\mathrm{L}=2$ and $i=0$ at $t=0$.
6. Solve any TWO of the following:
a) Attempt the following:
(i) If $z_{1}=-3+4 i, z_{2}=5-3 i$ express $\frac{z_{1}}{z_{2}}$ in $x+i y$ form.
(ii) Find $\mathrm{L}\left\{e^{-3 t} \sin 2 t\right\}$
b) Find $\mathrm{L}^{-1}\left\{\frac{3 s+1}{(s-1)\left(s^{2}+1\right)}\right\}$
c) Solve the differential equation using Laplace transform.

$$
\mathrm{L} \frac{d i}{d t}+\mathrm{R} i=\mathrm{V}, i(\mathrm{o})=0
$$

