22206

21718
3 Hours / 70 Marks
Seat No. \square

Instructions : (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Figures to the right indicate full marks.
(4) Use of Non-programmable Electronic Pocket Calculator is permissible.
(5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following :

(a) State whether the function $\mathrm{f}(x)=\frac{\mathrm{a}^{x}+\mathrm{a}^{-x}}{2}$ is even or odd.
(b) If $\mathrm{f}(x)=x^{2}+6 x+10$, find $\mathrm{f}(2)+\mathrm{f}(-2)$.
(c) If $y=\log \left(x^{2}+2 x+5\right)$, find $\frac{d y}{d x}$.
(d) Evaluate : $\int \frac{1}{\sin ^{2} x \cos ^{2} x} \mathrm{~d} x$.
(e) Find the area enclosed by the curve $\mathrm{y}=3 x^{2}, x$-axis and the ordinates $x=1$, $x=3$.
(f) An unbiased coin is tossed 5 times. Find the probability of getting a head.
(g) Evaluate : $\int x \cos x \mathrm{~d} x$.
2. Attempt any THREE of the following :
(a) If $\mathrm{e}^{x}+\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{x+y}$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$.
(b) If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$, find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{2}$.
(c) Find the maximum and minimum values of $\mathrm{y}=2 x^{3}-3 x^{2}-36 x+10$.
(d) A telegraph wire hangs in the form of a curve $\mathrm{y}=\mathrm{a} \log \left(\sec \left(\frac{x}{\mathrm{a}}\right)\right)$ where ' a ' is constant. Show that radius of curvature at any point is a sec $\left(\frac{x}{\mathrm{a}}\right)$.

3. Attempt any THREE of the following :

(a) Find the equation of tangent and normal to the curve $\mathrm{y}=2 x-x^{2}$ at $(2,0)$.
(b) Differentiate $(\sin x)^{\tan x}$ w.r.t. x.
(c) If $\mathrm{Y}=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$.
(d) Evaluate : $\int \frac{\sin \sqrt{x}}{\sqrt{x}} \mathrm{~d} x$.
4. Attempt any THREE of the following :
(a) Evaluate: $\int \frac{1}{\sqrt{1-x^{2}}\left(\sin ^{-1} x\right)^{2}} \mathrm{~d} x$
(b) Evaluate : $\int \frac{1}{5+4 \cos x} \mathrm{~d} x$
(c) Evaluate : $\int \frac{x}{1+\cos 2 x} \mathrm{~d} x$
(d) Evaluate : $\int \frac{\sec ^{2} x}{(1+\tan x)(2+\tan x)}$
(e) Evaluate : $\int_{0}^{\pi / 2} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\cos x}+\sqrt[3]{\sin x}} \mathrm{~d} x$
5. Attempt any TWO of the following :
(a) Find the area of the region bounded by the parabola $\mathrm{y}=4 x-x^{2}$ and the x-axis.
(b) Attempt the following :
(i) Form the D.E. by eliminating the arbitrary constants if $y=A \cos 3 x+B \sin 3 x$.
(ii) Solve : $x\left(1+\mathrm{y}^{2}\right) \mathrm{d} x+\mathrm{y}\left(1+x^{2}\right) \mathrm{dy}=0$.
(c) A particle starting with velocity $6 \mathrm{~m} / \mathrm{sec}$ has an acceleration $\left(1-\mathrm{t}^{2}\right) \mathrm{m} / \mathrm{sec}^{2}$, when does it first come to rest? How far has it then travelled?
6. Attempt any TWO of the following :
(a) Attempt the following :
(i) A person fires 10 shots at target. The probability that any shot will hit the target $3 / 5$. Find the probability that the target is hit exactly 5 times.
P.T.O.
(ii) If 20% of the bolts produce by a machine are defective. Find the probability that out of 4 bolts drawn,
(1) one is defective.
(2) at the most two are defective.
(b) A company manufacture electric motors. The probability that an electric motor is defective is 0.01 . What is the probability that a sample of 300 electric motors will contains exactly 5 defective motors? (Given $\mathrm{e}^{-3}=0.0498$)
(c) In a sample of 1000 cases the mean of certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find
(1) how many students score above 18 ?
(2) how many students score between 12 and 15 ?
[Given : $\mathrm{A}(0.4)=0.1554, \mathrm{~A}(0.8)=0.2881, \mathrm{~A}(1.6)=0.4452]$

