THE OF THE REAL PROPERTY.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer: Summer 2018

Subject: Basic Surveying Sub. Code: 22205

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any five of the following:		10
	(a) Ans.	Define "Chain survey". Chain Survey: The Survey in which only linear measurements are taken in the field with the help of chain and remaining work such as plotting, calculation etc. are done in the office, is called as chain survey.	2	2
	(b) Ans.	Enlist various methods of levelling. Methods of leveling: i. Simple levelling ii. Differential levelling iii. Longitudinal levelling iv. Cross section levelling v. Fly levelling vi. Check levelling vii. Reciprocal levelling viii. Profile levelling	each (any four)	2
	(c) Ans.	Define plane survey and geodetic survey. Plane survey: The survey in which curvature of the earth is not taken in to consideration is called as plane survey. Geodetic survey: The survey in which curvature of the earth is taken in to consideration is called as geodetic survey.	1	2
	(d) Ans.	State any two causes of local attraction. Local attraction caused due to attraction of magnetic needle by following sources:		

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		 i. Iron or steel structure ii. Electric cable line iii. Wires iv. Iron poles v. iron ore vi. Bunch of key vii. Knife viii. Steel Tape ix. Earth's gravitational force of attraction 	1 each (any two)	2
	(e) Ans.	State meaning of i) A scale of plan ii) Drawing to scale. i. A Scale of plan: A scale of plan is a ratio of linear dimensions of an object as represented in drawing to actual dimensions of the same object. ii. Drawing to scale: The proportion by which the drawing of an object is enlarged or reduced is called as drawing to scale.	1	2
	(f) Ans.	Define "Contour" and "Contour line". Contour: An imaginary line on the ground, joining the points of same elevation or same R.L's is called as 'Contour'.	1	
		Contour line: A line passing through points of equal elevation or equal R.L's is called as contour line. OR The line of intersection of a level surface with ground surface is known as contour line.	1	2
	(g) Ans.	Enlist the components of digital planimeter. Components of digital planimeter: i. Digital display ii. Rolling wheel or Rollers iii. Tracing arm iv. Functional keys or buttons v. Sliding wheel	each (any four)	2
Q. 2	(a)	Attempt any three:		12
	Ans.	Define: i) Magnetic bearing ii) FB iii) BB iv) Bearing of line. i. Magnetic bearing; The bearing of a line measured with respect to magnetic north in clockwise manner is called as magnetic bearing. ii. Fore bearing: The bearing observed in the direction of progress of survey with	1	
		The bearing observed in the direction of progress of survey with respect to north direction in clockwise manner is called fore bearing.	1	

Sub. Code: 22205

Model Answer: Summer 2018

Subject: Basic Surveying

0	C1-			T-4-1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1,00	- Quo	iii. Back bearing: The bearing observed in the backward direction or opposite direction of survey with respect to north direction in clockwise manner is called back bearing.	1	4
		iv. Bearing of line: The horizontal angle made by survey line with respect to meridian (North direction) is known as bearing of line.	1	
	(b) Ans.	Explain the principle of surveying. Principle of surveying are as follows: i. To work from whole to part.		
		According to the first principle, the whole area is first enclosed by main stations and main survey lines as shown in figure above. The area is then divided into a number of parts by forming well conditioned triangles. A nearly equilateral triangle is considered to be the best well conditioned triangle. The main survey lines are measured very accurately with a standard chain. The sides of triangles are measured. The purpose of this process of working is to prevent accumulation of error.	2	
		ii. To locate a new station by at least two measurement from fixed reference points. The new stations should always be fixed by at least two measurements from fixed reference points. Linear measurements refer to horizontal distance measured by chain or tape. Angular measurements refer to the magnetic bearing or horizontal angle taken by a prismatic compass or theodolite. The new station or ground point is located using linear measurement or angular measurement or both measurements.	2	4

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	(c) Ans.	Explain temporary adjustment of dumpy level. Temporary adjustment of dumpy level: I. Setting up the level. i. The level fixed on tripod. ii. The legs of tripod stand are well spread so that the level will remain stable on tripod. iii. Bring all the three foot screws in the Centre of their run so that they can be turned clockwise or anticlockwise as required, for Levelling purpose. iv. Adjust the height of the instrument so that the observer can Comfortably see through the telescope and note the readings. v. Fix two legs of tripod and adjust third leg in such a way that the levelling head will become as horizontal as possible by eye judgment.	1	
		 II. Levelling up the level. i. The base of the tripod is already leveled with the help of cross bubble. ii To make accurate adjustment of the level, the longitudinal level is adjusted in the Centre of its run, with the help of three foot screws. iii. Make the bubble parallel to the any selected pair of foot screws. Now; turn both the foot screws either inward or outward with the help of foot screws till the bubble appears in the center. iv. Turn the telescope through 90° and now with the help of third screw bring the bubble of levelling tube in the center. v. Repeat above process, until bubble will remain at centre in both position. Then levelling is said to be completed. III. Focusing the eye piece. 	1	4
		 i. Hold a sheet of white paper in front of the objective glass 4 to 6 cm away from objective glass and see through the eye piece. ii. Turn the eye piece inwards or outwards in the socket so that the cross hair on the diaphragm appears sharp and clear. IV. Focusing the object glass. i. Direct the telescope towards any object, say a levelling staff in the field which is kept at a distance. See through eyepiece whether the 	1	
		staff is visible, distinct or not. ii. If not, then turn the focusing screw till the image is distinct and clear. The cross hair on the diaphragm should also be seen clearly.	1	

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.			Model Answers		Marks	Total Marks
Q. 2	(d) Ans.	Conve i)		g bearings from WCB to QB 57°45' iii) 51°15' iv) 333°30'			
		Sr. No.	WCB	Conversion	QB		
		i.	$\Theta_1 = 247^{\circ}30^{\circ}$	As Θ_1 lies in III rd Quadrant RB = Θ_1 - 180° = 247°30' - 180° = S 67°30' W	S 67°30' W	1	
		ii.	Θ ₂ = 167°45'	As Θ_2 lies in II nd Quadrant RB = 180° - Θ_2 = 180° - 167°45' = S 12°15' E	S 12°15' E	1	4
		iii.	$\Theta_3 = 51^{\circ}15'$	As Θ_3 lies in I st Quadrant RB = WCB =N 51°15'E	N 51°15'E	1	
		iv.	Θ ₄ = 333°30'	As Θ_4 lies in IV th Quadrant RB = 360° - Θ_4 = 360° - 333°30' = N 26°30' W	N 26°30' W	1	
Q. 3	(a) Ans.	Explai i. ii. iii.	As bench mark known or preastaken on it. The height of instruseful to calculate levelling. Thus bench more work. It is not ground points with the BM is imparithmetical chefall method.	of benchmark in levelling. It is the ground point whose elessumed; the back sight reading is back sight (BS) reading is unument (HI) in line of collimate R.L.'s of other ground point ark (BM) is essential to common possible to calculate reduced without knowing BM. Footant to check the RL calculate ecks in both methods i.e. HI is eful to check the one day's observable.	g (first reading) is useful to calculate ation. This HI is nts, in all types of mence the survey levels (RL's) of ations by applying method and Rise-	1 each	4

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(b) Ans.	Draw conventional symbols for i) Compound wall ii) Pucca Building iii) Cutting iv) Embankment		
		Compound Wall		
		Pucca Building	1 each	4
		Cutting		
		Embankment		
	(c) Ans.	Explain declination of magnetic needle and give its types. The horizontal angle between the magnetic meridian and true meridian is known as magnetic declination. When magnetic north gets deviated from true north towards east or west due to local attraction, then it is known as magnetic declination. Due to various local sources magnetic needle of prismatic compass does nor remains in true north position; such an error is called as declination of magnetic needle. True Magnetic M.M. T.M.	2	
		(I.M) (M.M)	1	4
		(a) Declination east (b) Declination west Depending upon declination towards east or north direction, there are two types of declinations. i) East declination ii) West declination.	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Sub. Code: 22205

Model Answer: Summer 2018

Subject: Basic Surveying

Oue. Sub. Total **Model Answers** Marks No. Que. Marks 0.3 (d) Draw sketch of dumpy level and name all parts. Ans. DUMPY LEVEL 2. EYE-PIECE UPPER PARALLEL PLATE (TRIBRACH) DIAPHRAGM ADJUSTING SCREWS RAY SHADE OBJECTIVE END BUBBLE TUBE ADJUSTING SCREWS TRANSVERSE BUBBLE TUBE LONGITUDINAL BUBBLE 6. FOCUSING SCREWS 12. FOOT PLATE (TRIVET STAGE) (Note: 3 marks for sketch and 1 mark for labelling.) Q. 4 12 Attempt any three: (a) Differentiate between height of instrument and rise and fall method. Ans. **Height of Instrument** Rise and Fall Method Method I This method is a fast Ī This method is a slower method and is less method than tedious because method as it involves requires less calculations. more calculations. II There is no check on There is a complete R.L.s intermediate check on all calculation of stations work. 1 Following **Following** check Ш check Ш each applied, applied. (any $\Sigma BS - \Sigma FS$ $\Sigma BS - \Sigma FS$ four) = Last R.L. - First R.L. $= \Sigma \operatorname{Rise} - \Sigma \operatorname{Fall}$ = Last R.L. - First R.L. IV Error in calculations of IV Error in calculations of intermediate RLs of intermediate **RLs** of stations is not carried stations carried is forward. forward. This method is more This method is V less accurate. accurate. VI It is used for calculations VI It used is for of profile levelling in calculations of precise construction works such levelling works, check as canals, roads etc. levelling.

Model Answer: Summer 2018

Subje	ct: Basi	ic Surveying	Sub. Code: 22205			
Que. No.	Sub. Que.	Model Answers		Marks	Total Mark	
Q. 4	(b)	Explain procedure for computing volume by i) Trapezoidal formula ii) Prismoidal formula				
	Ans.	I. Trapezoidal formula: Procedure for computing the volume by trapezoidal formula follows: i. Divide the total length of plan (L-section) in to number (cross sections). In this method areas are divided into series of trapezoids as sfigure below. ii. Calculate the areas of each section (i.e. ends, intermediate to A_n) iii. Calculate volume of earth work in cutting and embanks using formula. Trapezoidal formula: $V = D/2 \times (A_0 + 2A_1 + 2A_2 + \dots + 2A_{n-1} + A_n)$ Where,	of strips hown in from A_1	2		
		In this method areas are divided into series of prismoids as sfigure below. II. Prismoidal formula: Procedure for computing the volume by prismoidal formula follows: i. Divide the total length of plan (L-section) in to number (cross sections). In this method areas are divided into series of prismoids as sfigure above. ii. Calculate the areas of each section (i.e. ends, intermediate to A_n) iii. Calculate volume of earth work in cutting and embanklusing formula. iv. Prismoidal formula: $V = D/3 \times (A_0 + 4(A_1 + A_3 +) + 2(A_2 + A_4 +) + A_n$	la is as of strips hown in from A_1	2	4	

Model Answer: Summer 2018

Subject: Basic Surveying

No. Que. (c) Explain four uses of contour map. Following are uses of contour map: i To draw longitudinal section and plan of given map. ii To determine inter-visibility between two points. iii To trace contour gradient and to locate route for alignments of railways, roadways, canals etc. iv To measurement of drainage areas. v. To calculate reservoir capacity. vi To find intersection of surfaces and measurement of earth work. vii To determine nature of ground in proposed area.	Que. Su	Model Answers	Morks	Total
Ans. Following are uses of contour map: i To draw longitudinal section and plan of given map. ii To determine inter-visibility between two points. iii To trace contour gradient and to locate route for alignments of railways, roadways, canals etc. iv To measurement of drainage areas. v. To calculate reservoir capacity. vi To find intersection of surfaces and measurement of earth work.	No. Qu		MIALKS	Marks
	No. Qu	Following are uses of contour map: i To draw longitudinal section and plan of given map. ii To determine inter-visibility between two points. iii To trace contour gradient and to locate route for alignments railways, roadways, canals etc. iv To measurement of drainage areas. v. To calculate reservoir capacity. vi To find intersection of surfaces and measurement of earth work.	each (any	

Model Answer: Summer 2018

Subject: Basic Surveying

Que.	Sub.									Total		
No.	Que.				Model	Answers			Marks	Marks		
Q. 4	(d)	staff o 0.76, 1 0.875, RL of	Following consecutive readings were taken with a level on 4 m staff on continuously slopping ground at common interval 30 m. 0.76, 1.515, 1.935, 2.400, 2.985, 3.650, 1.015, 1.855, 2.495, 3.57, 0.875, 1.085, 1.790, 2.450. RL of first point is 200.500 m. Calculate RL of all points by HI method.									
		Staff Stn.	BS	IS	FS	HI	RL	Remark				
		0	0.760			201.26	200.500	First RL				
		30	0.700	1.515		201.20	199.745	THSCKE				
		60		1.935			199.325					
		90		2.400			198.860					
		120		2.985			198.275					
		150	1.015	2.5 00	3.650	198.625	197.610	CP1	3			
		180		1.855		-, -, -, -, -, -, -, -, -, -, -, -, -, -	196.770					
		210		2.495			196.130					
		240	0.875		3.570	195.930	195.055	CP2				
		270		1.085			194.845			4		
		300		1.790			194.140			4		
		330			2.450		193.480	Last RL				
		Σ	2.650		9.670							
	(e) Ans.	2.65 – 7.02 = Descrii The properties of the prop	Σ FS = I 9.67 = 19 = -7.02 be proce ocedure of ows: the area nile measure the plan displaye the scale rk one so f magnifies the standard gain at it	dure for of measurement in the present dure for trace to button as starting	measuri rement of blane suri it does not y pressin ing scale oint on the ing arm of and move g point. Pr	ng area usif an area usiface of tablet move. g on button button on keep to digital plantacing armoress the end	e and fix it on key pad ey pad. It that area a animeter. It on boundar button.	lanimeter. planimeter is with clips so of it. Screen and place the ry of area and lay of digital	4	4		

Model Answer: Summer 2018

Subject: Basic Surveying

No. Que. Model Answers Marks							
Q. 5 Attempt any two: Calculate included angle for closed traverse and apply usual cheek. Line FB BB AB 46"30" 226"30" BC 117"30" 298" CD 168" 349" DA 290" 112"30" 298" CD 168" 349" DA 290" 112"30" 298" CD 168" 349" DA 290" 112"30" 298" CD 20"30" - 117"30" - 109" \angle C = BB of AB = FB of BC = 226"30" - 117"30" - 109" \angle C = BB of BC-FB of CD = 298"0" - 168" = 130" \angle D = BB of CD - FB of DA = $(349^0 - 290^0) = 59^0$ Check: Sum of included angle = $(2n - 4) \times 90^0$ $(66^0 + 109^0 + 130^0 + 59^0 = (2 \times 4 - 4) \times 90^0$ $(66^0 + 109^0 + 130^0 + 59^0 = (2 \times 4 - 4) \times 90^0$ $(66^0 + 109^0 + 130^0 + 59^0 = 10^0 + 108^0)$ Corrected \angle A = $(66^0 - 10^0 + 108^0)$ $(67^0 + 120^0 + 108^0)$ $(67^0 + 120^0 + 108^0)$ $(67^0 + 120^0 + 120^0)$ $(67^0 + 120^0 + 120^0 + 120^0)$ $(67^0 + 120^0 + 120^0 + 120^0 + 120^0)$ $(67^0 + 120^0 + 120^0 + 120^0 + 120^0 + 120^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ Sum of included angle = $(27^0 - 4) \times 90^0$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0 + 120^0 + 58^0)$ $(67^0 + 120^0$	_			Model Answer	S	Marks	Total
(a) Calculate included angle for closed traverse and apply usual check. Line FB BB AB 46°30' 226°30' BC 117°30' 298° CD 168° 349° DA 290° 112°30' Ans. $\angle A = BB \text{ of } DA - FB \text{ of } AB = 112°30' \cdot 46°30' = 66°$ $\angle B = BB \text{ of } AB - FB \text{ of } BC = 226°30' \cdot 117°30' = 109°$ $\angle C = BB \text{ of } BC - FB \text{ of } CD = 298°0' \cdot 168° = 130°$ $\angle D = BB \text{ of } CD - FB \text{ of } DA = (349° - 290°) = 59°$ Check: Sum of included angle = $(2n - 4) \times 90°$ $364° = 360°$ Total error = $364° - 360° = 4°$ Correction for each angle = $4°/4 = 1°$ Hence correction of $-1°$ should be applied Corrected $\angle A = 66° - 1° = 65°$ Corrected $\angle B = 109° - 1° = 108°$ Corrected $\angle C = 130° - 1° = 129°$ Corrected $\angle D = 59° - 1° = 58°$ Sum of included angle = $(2n - 4) \times 90°$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90°$ $2 = 266° + 26$		Que.	Attemnt any two				Marks 12
check. Line FB BB AB $46^{\circ}30^{\circ}$ $226^{\circ}30^{\circ}$ BC $117^{\circ}30^{\circ}$ 298° CD 168° 349° DA 290° $112^{\circ}30^{\circ}$ Ans. $\angle A = BB \text{ of } DA - FB \text{ of } AB = 112^{\circ}30^{\circ} - 46^{\circ}30^{\circ} = 66^{\circ}$ $\angle B = BB \text{ of } AB - FB \text{ of } BC = 226^{\circ}30^{\circ} - 117^{\circ}30^{\circ} = 109^{\circ}$ $\angle C = BB \text{ of } BC - FB \text{ of } CD = 298^{\circ}0^{\circ} - 168^{\circ} = 130^{\circ}$ $\angle D = BB \text{ of } CD - FB \text{ of } DA = (349^{\circ} - 290^{\circ}) = 59^{\circ}$ Check: Sum of included angle = $(2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $364^{\circ} = 360^{\circ}$ Total error = $364^{\circ} - 360^{\circ} = 4^{\circ}$ Correction for each angle = $4^{\circ}/4 = 1^{\circ}$ Hence correction of -10 should be applied Corrected $\angle A = 66^{\circ} - 1^{\circ} = 65^{\circ}$ Corrected $\angle B = 109^{\circ} - 1^{\circ} = 108^{\circ}$ Corrected $\angle C = 130^{\circ} - 1^{\circ} = 129^{\circ}$ Corrected $\angle D = 59^{\circ} - 1^{\circ} = 58^{\circ}$ Sum of included angle = $(2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{\circ}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4$	V. 3		Treeempt any two	•			12
Line FB BB AB 46^930° 226^930° BC 117^930° 298^9 CD 168^9 349^9 DA 290^9 112^930° 298^9 CD 168^9 349^9 DA 290^9 112^930° 298^9		(a)	Calculate includ	ed angle for closed t	raverse and apply usual		
AB					1		
BC 117 ⁸ 30' 298 ⁸ CD 168 ⁸ 349 ⁹ DA 290 ⁰ 112 ⁰ 30' Ans. $\angle A = BB \text{ of } DA - FB \text{ of } AB = 112^{0}30' - 46^{0}30' = 66^{0}$ $\angle B = BB \text{ of } AB - FB \text{ of } BC = 226^{0}30' - 117^{0}30' = 109^{0}$ $\angle C = BB \text{ of } BC - FB \text{ of } CD = 298^{0}0' - 168^{0} = 130^{0}$ $\angle D = BB \text{ of } CD - FB \text{ of } DA = (349^{0} - 290^{0}) = 59^{0}$ Check: Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $364^{0} = 360^{0}$ Total error = $364^{0} - 360^{0} = 4^{0}$ Correction for each angle = $4^{0}/4 = 1^{0}$ Hence correction of -1 ⁰ should be applied Corrected $\angle A = 66^{0} - 10^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $A + \angle B + \angle C + A = (2n - 4) \times 90^{0}$ $A + A = (2n - 4) \times 90^{0}$			Line				
Ans. $\angle A = BB \text{ of } DA - FB \text{ of } AB = 112^030^\circ - 46^030^\circ = 66^0$ $\angle B = BB \text{ of } AB - FB \text{ of } BC = 226^030^\circ - 117^030^\circ = 109^0$ $\angle C = BB \text{ of } BC - FB \text{ of } CD = 298^00^\circ - 168^0 = 130^0$ $\angle D = BB \text{ of } CD - FB \text{ of } DA = (349^0 - 290^0) = 59^0$ Check: Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0/4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle C = 130^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$			AB	46 ⁰ 30'	226°30′		
Ans. $\angle A = BB \text{ of } DA - FB \text{ of } AB = 112^030^{\circ} - 46^030^{\circ} = 66^0$ $\angle B = BB \text{ of } AB - FB \text{ of } BC = 226^030^{\circ} - 117^030^{\circ} = 109^0$ $\angle C = BB \text{ of } BC - FB \text{ of } CD = 298^00^{\circ} - 168^0 = 130^0$ $\angle D = BB \text{ of } CD - FB \text{ of } DA = (349^0 - 290^0) = 59^0$ Check: Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0 / 4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle C = 130^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $65^0 + 108^0 + 129^0 + 58^0 = (2 \times 4 - 4) \times 90^0$			ВС	117 ⁰ 30'	2980		
Ans. $\angle A = BB \text{ of } DA - FB \text{ of } AB = 112^0 30^\circ - 46^0 30^\circ = 66^0$ $\angle B = BB \text{ of } AB - FB \text{ of } BC = 226^0 30^\circ - 117^0 30^\circ = 109^0$ $\angle C = BB \text{ of } BC - FB \text{ of } CD = 298^0 0^\circ - 168^0 = 130^0$ $\angle D = BB \text{ of } CD - FB \text{ of } DA = (349^0 - 290^0) = 59^0$ Check: Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0 / 4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle C = 130^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $4 - 4 + 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +$			CD	168 ⁰	349 ⁰		
$ \angle B = BB \text{ of } AB - FB \text{ of } BC = 226^030^{\circ} - 117^030^{\circ} = 109^0 $ $ \angle C = BB \text{ of } BC - FB \text{ of } CD = 298^00^{\circ} - 168^0 = 130^0 $ $ \angle D = BB \text{ of } CD - FB \text{ of } DA = (349^0 - 290^0) = 59^0 $ $ \frac{C \text{heck:}}{S \text{um of included angle}} = (2\mathbf{n} - 4) \times 90^0 $ $ \angle A + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{364^0 = 360^0}{364^0 = 360^0} $ $ \frac{364^0 = 360^0}{T \text{ otal error}} = 364^0 - 360^0 = 4^0 $ $ \frac{C \text{orrection for each angle}}{C \text{ orrected}} = 4^0 / 4 = 1^0 $ $ \frac{1}{4} \text{ Hence correction of } -1^0 \text{ should be applied} $ $ \frac{1}{4} \text{ Corrected} \angle A = 66^0 - 1^0 = 65^0 $ $ \frac{1}{4} \text{ Corrected} \angle B = 109^0 - 1^0 = 108^0 $ $ \frac{1}{4} \text{ Corrected} \angle C = 130^0 - 1^0 = 129^0 $ $ \frac{1}{4} \text{ Corrected} \angle D = 59^0 - 1^0 = 58^0 $ $ \frac{1}{4} \text{ Sum of included angle} = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{1}{4} \text{ A} + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{1}{4} \text{ A} + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{1}{4} \text{ A} + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $			DA	2900	112 ⁰ 30'		
$ \angle B = BB \text{ of } AB - FB \text{ of } BC = 226^030^{\circ} - 117^030^{\circ} = 109^0 $ $ \angle C = BB \text{ of } BC - FB \text{ of } CD = 298^00^{\circ} - 168^0 = 130^0 $ $ \angle D = BB \text{ of } CD - FB \text{ of } DA = (349^0 - 290^0) = 59^0 $ $ \frac{C \text{heck:}}{S \text{um of included angle}} = (2\mathbf{n} - 4) \times 90^0 $ $ \angle A + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{364^0 = 360^0}{364^0 = 360^0} $ $ \frac{364^0 = 360^0}{T \text{ otal error}} = 364^0 - 360^0 = 4^0 $ $ \frac{C \text{orrection for each angle}}{C \text{ orrected}} = 4^0 / 4 = 1^0 $ $ \frac{1}{4} \text{ Hence correction of } -1^0 \text{ should be applied} $ $ \frac{1}{4} \text{ Corrected} \angle A = 66^0 - 1^0 = 65^0 $ $ \frac{1}{4} \text{ Corrected} \angle B = 109^0 - 1^0 = 108^0 $ $ \frac{1}{4} \text{ Corrected} \angle C = 130^0 - 1^0 = 129^0 $ $ \frac{1}{4} \text{ Corrected} \angle D = 59^0 - 1^0 = 58^0 $ $ \frac{1}{4} \text{ Sum of included angle} = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{1}{4} \text{ A} + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{1}{4} \text{ A} + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $ $ \frac{1}{4} \text{ A} + \angle B + \angle C + \angle D = (2\mathbf{n} - 4) \times 90^0 $				I			
$ \angle B = BB \text{ of } AB - FB \text{ of } BC = 226^{0}30^{\circ} - 117^{0}30^{\circ} = 109^{0} $ $ \angle C = BB \text{ of } BC - FB \text{ of } CD = 298^{0}0^{\circ} - 168^{0} = 130^{0} $ $ \angle D = BB \text{ of } CD - FB \text{ of } DA = (349^{0} - 290^{0}) = 59^{0} $ $ \angle Check: $ $ Sum \text{ of included angle} = (2n - 4) \times 90^{0} $ $ \angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0} $ $ 364^{0} + 130^{0} + 130^{0} + 59^{0} = (2 \times 4 - 4) \times 90^{0} $ $ 364^{0} = 360^{0} $ $ Total \text{ error} = 364^{0} - 360^{0} = 4^{0} $ $ Correction \text{ for each angle} = 4^{0}/4 = 1^{0} $ $ Hence \text{ corrected} \angle A = 66^{0} - 1^{0} = 65^{0} $ $ Corrected \angle A = 66^{0} - 1^{0} = 65^{0} $ $ Corrected \angle B = 109^{0} - 1^{0} = 108^{0} $ $ Corrected \angle C = 130^{0} - 1^{0} = 129^{0} $ $ Corrected \angle D = 59^{0} - 1^{0} = 58^{0} $ $ Sum \text{ of included angle} = (2n - 4) \times 90^{0} $ $ \angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0} $ $ 65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0} $		Ans.	$\angle A = BB \text{ of } DA$	$-$ FB of AB = $112^{0}30$ '- 4	$46^{0}30$ '= 66^{0}		
			$\angle B = BB \text{ of } AB$	$- FB \text{ of BC} = 226^{0}30$ '- 1	17^030 '= 109^0		
Check: Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $2 \times A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0/4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle D = 59^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $65^0 + 108^0 + 129^0 + 58^0 = (2 \times 4 - 4) \times 90^0$			$\angle C = BB \text{ of } BC$	$- FB \text{ of } CD = 298^{\circ}0' - 16'$	$68^0 = 130^0$	2	
Check: Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $66^0 + 109^0 + 130^0 + 59^0 = (2 \times 4 - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0 / 4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle D = 59^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $65^0 + 108^0 + 129^0 + 58^0 = (2 \times 4 - 4) \times 90^0$							
Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $66^0 + 109^0 + 130^0 + 59^0 = (2 \times 4 - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0/4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle C = 130^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $65^0 + 108^0 + 129^0 + 58^0 = (2 \times 4 - 4) \times 90^0$				1 B 01 B/1 (34) 2.	70) 3 <i>)</i>		
Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $66^0 + 109^0 + 130^0 + 59^0 = (2 \times 4 - 4) \times 90^0$ $364^0 = 360^0$ Total error = $364^0 - 360^0 = 4^0$ Correction for each angle = $4^0/4 = 1^0$ Hence correction of -1^0 should be applied Corrected $\angle A = 66^0 - 1^0 = 65^0$ Corrected $\angle B = 109^0 - 1^0 = 108^0$ Corrected $\angle C = 130^0 - 1^0 = 129^0$ Corrected $\angle C = 130^0 - 1^0 = 58^0$ Sum of included angle = $(2n - 4) \times 90^0$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^0$ $65^0 + 108^0 + 129^0 + 58^0 = (2 \times 4 - 4) \times 90^0$			Charles				
$\angle \mathbf{A} + \angle \mathbf{B} + \angle \mathbf{C} + \angle \mathbf{D} = (2\mathbf{n} - 4) \times 90^{0}$ $66^{0} + 109^{0} + 130^{0} + 59^{0} = (2 \times 4 - 4) \times 90^{0}$ $364^{0} = 360^{0}$ Total error = 364^{0} - $360^{0} = 4^{0}$ Correction for each angle = $4^{0}/4 = 1^{0}$ Hence correction of -1^{0} should be applied Corrected $\angle \mathbf{A} = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle \mathbf{B} = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle \mathbf{C} = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle \mathbf{D} = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2\mathbf{n} - 4) \times 90^{0}$ $\angle \mathbf{A} + \angle \mathbf{B} + \angle \mathbf{C} + \angle \mathbf{D} = (2\mathbf{n} - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$				angla = (2 - 4) - 00 ⁰			
$66^{0} + 109^{0} + 130^{0} + 59^{0} = (2 \times 4 - 4) \times 90^{0}$ $364^{0} = 360^{0}$ Total error = 364^{0} - 360^{0} = 4^{0} Correction for each angle = $4^{0}/4 = 1^{0}$ Hence correction of -1^{0} should be applied Corrected $\angle A = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$					50		
Total error = 364^{0} - 360^{0} = 4^{0} Correction for each angle = $4^{0}/4 = 1^{0}$ Hence correction of -1^{0} should be applied Corrected $\angle A = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ 2 Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$,)°	2	6
Total error = 364^{0} - 360^{0} = 4^{0} Correction for each angle = $4^{0}/4 = 1^{0}$ Hence correction of -1^{0} should be applied Corrected $\angle A = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$				$-59^{\circ} = (2 \times 4 - 4) \times 90^{\circ}$			
Correction for each angle = $4^{0}/4 = 1^{0}$ Hence correction of -1^{0} should be applied Corrected $\angle A = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$							
Hence correction of -1^{0} should be applied Corrected $\angle A = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$							
Corrected $\angle A = 66^{0} - 1^{0} = 65^{0}$ Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Correction for ea	1.1 angle $= 4^0 / 4 = 1^0$			
Corrected $\angle B = 109^{0} - 1^{0} = 108^{0}$ Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Hence correction	of -1 ⁰ should be applied			
Corrected $\angle C = 130^{0} - 1^{0} = 129^{0}$ Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Corrected $\angle A = 0$	$66^{\circ} - 1^{\circ} = 65^{\circ}$			
Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Corrected $\angle B = 1$	$109^0 - 1^0 = 108^0$		2	
Corrected $\angle D = 59^{0} - 1^{0} = 58^{0}$ Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Corrected $\angle C = 1$	$130^0 - 1^0 = 129^0$			
Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D = (2n - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Corrected $\angle D = 3$	$59^0 - 1^0 = 58^0$			
$\angle \mathbf{A} + \angle \mathbf{B} + \angle \mathbf{C} + \angle \mathbf{D} = (2\mathbf{n} - 4) \times 90^{0}$ $65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$							
$65^{0} + 108^{0} + 129^{0} + 58^{0} = (2 \times 4 - 4) \times 90^{0}$			Sum of included	angle = $(2n - 4) \times 90^0$			
			$\angle A + \angle B + \angle$	$(C + \angle D = (2n-4) \times 9)$	$\Theta 0^0$		
			$65^{0} + 108^{0} + 129^{0} +$	$-58^0 = (2 \times 4 - 4) \times 90^0$			
				,			

Model Answer: Summer 2018

Subject: Basic Surveying

Model Answer: Summer 2018

Subject: Basic Surveying

0	CL	 [Total
Que. No.	Sub. Que.				Mo	del Ans	wers				Marks	Total Marks
Q. 5	Ans.	Sr.	Chainage	BS	IS	FS	Rise	Fall	RL	Remark		Wat Ks
		No. 1	0	0.950	120		1430		100.000	First RL	1	
		2	25	0.930	1.615			0.665	99.335	THSUKL	-	
		3	50		1.925			0.310	99.025		1	
		4	75		2.515			0.510	98.435		-	
		5	100		2.895			0.380	98.055		1	
		6	125	1.125	2.050	3.495		0.600	97.455	C.P.1	1	
		7	150		1.980			0.855	96.600		4	
		8	175		2.450			0.470	96.130		7	
		9	200	0.925		3.750		1.300	94.830	C.P.2	1	
		10	225		1.455			0.530	94.300		1	
		11	250		1.750			0.295	94.005			
		12	275			2.850		1.100	92.905	Last RL		6
			Σ	3.000		10.095	0	7.095				
			dient = (Las = (92 = -0.0 = -1 /	ot RL – 1 .905 – 1 258 38.75	95 = 0 -7.095 = First RI 00.000	- 7.095 = -7.095 L) / Dista	= 92. = -7.0 ance	905 – 1		R.L.	1	

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(a)	Attempt any two: Counter survey data of a field is shown in given figure. Draw 94.000 m contour line by linear interpolation method. Show all the calculations grid size is 10 m x 10 m.		12
		90.00 A B 95.00		
		91.275 C D 96.135		
	Ans.	$ \frac{95.00}{10} = \frac{94.00 - 90.00}{x} $ $ \frac{95.00 - 90.00}{10} = \frac{94.00 - 90.00}{x} $	1½	
		x = 8.0		
		96.135 94.00 96.135 - 91.275 $ \frac{96.135 - 91.275}{10} = \frac{94.00 - 91.275}{x} $ $ \frac{91.275}{x} = \frac{91.275}{x} $ $ x = 5.606 \text{ m} $	1½	6
		94.030 94.030 - 91.275 $ \begin{array}{c} 94.030 - 91.275 \\ \hline 10 \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	1½	

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.		Marks	Total Marks		
Q. 6		90.00 A	8.0 m	B 95.00		
		91.275 C 9.891 m	5.606 m	D 96.135	1½	
		94.00 94.030 E		F 97.815		
	(b)	Following bearing w ABCDE. Calculate inc	se			
		Line	Fore bearing	Back bearing		
		AB	110000	290000		
		BC	30 ⁰ 15' 244 ⁰ 00'	214 ⁰ 15' 64 ⁰ 00'		
		DE	3100 15'	130°15'		
		EA	192° 45'	140 45'		
	Ans.	$\angle A = FB \text{ of } AB - BB$ $\angle B = 360^{\circ} - (FB \text{ of } 100^{\circ}15^{\circ})$ $\angle C = FB \text{ of } CD - BB$ $\angle D = (FB \text{ of } DE - BB)$ $\angle E = FB \text{ of } EA - BB \text{ of } EA - BB$	2			
		Check:				(
		Sum of included angle		6		
		$\angle A + \angle B + \angle C +$				
		$95^{0}45' + 100^{0}15' + 29^{0}45'$				
		$534^{0}30^{\circ} = 540^{0}$				
		Total error =534 ⁰ 30'-				
		Correction for each an	2			
		Hence correction of 1 ⁰ 6				
		Corrected $\angle A = 95^{\circ}45$				
		Corrected \angle B = 100 ⁰ 1				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Summer 2018

Subject: Basic Surveying Sub. Code: 22205 Oue. Total Sub. Marks **Model Answers** No. Que. Marks Corrected $\angle C = 29^{0}45' + 1^{0}6' = 30^{0}51'$ Q. 6 Corrected $\angle D = 246^{0}15' + 1^{0}6' = 247^{0}21'$ Corrected \angle E = 62⁰30'+1⁰6'= 63⁰36' 2 Sum of included angle = $(2n - 4) \times 90^{0}$ $\angle A + \angle B + \angle C + \angle D + \angle E = (2n-4) \times 90^{0}$ $96^{0}51' + 101^{0}21' + 30^{0}51' + 247^{0}21' + 63^{0}36' = (2 \times 5 - 4) \times 90^{0}$ $540^0 = 540^0$ Find the missing readings marked as 'X' and apply the usual (c) check. Stn. B.S. I.S. F.S. Rise Fall R.L. Remark 2.345 129.50 BM1 2 1.650 X 0.035 2.210 X 3 X 1.850 4 X 5 1.850 1.925 0.455 C.P. 6 X 0.37 129.00 Ans. 2.345 - X = 0.035X = 2.3101.650 - 2.210 = XX = 0.56021/2 2.210 - 1.850 = XX = 0.360X - 1.925 = -0.455X = 1.4701.850 - X = 0.37X = 1.480

Model Answer: Summer 2018

Subject: Basic Surveying

Que. No.	Sub. Que.	Model Answers							Marks	Total Marks	
Q. 6		Stn.	B.S.	I.S.	F.S.	Rise	Fall	R.L.	Remark	_	
		1	2.345					129.500	First RL		
		2	1.650		2.310	0.035		129.535	CP1		
		3		2.210			0.560	128.975		11/	6
		4	1.470		1.850	0.360		129.335	CP2	1½	0
		5	1.850		1.925		0.455	128.880	CP3		
		6			1.480	0.370		129.250	Last RL		
		\sum	7.315		7.565	0.765	1.015				
		C			65 = 0.76	E Rise - Σ Fig. 55 - 1.015 $S = -0.25 = -0.25$	= 129.50	R.L. – First – 129.25	R.L.	2	