## 11920

3 Hours / 70 Marks
Seat No.


Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

## Marks

1. Attempt any FIVE of the following : 10
a) If $f(x)=16^{x}-\log _{2} x$ find $f\left(\frac{1}{4}\right)$
b) If $f(x)=a x^{2}-b x-1, f(2)=5, f(-2)=10$ find $a$ and $b$.
c) Find $\frac{d y}{d x}$, if $y=x \sin ^{-1} x$
d) Evaluate $: \int \frac{d x}{3 x^{2}+4}$
e) Evaluate : $\int \sin ^{3} x d x$
f) Find the volume obtained by revolving the area under the curve $9 x^{2}-4 y^{2}=36$ in the interval from $x=2$ to $x=4$ about $x$-axis.
g) Find order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}=\left(y+\frac{d y}{d x}\right)^{3 / 2}$
2. Attempt any THREE of the following:
a) If $x^{p} y^{q}=(x+y)^{p+q}$ show that $\frac{d y}{d x}=\frac{y}{x}$
b) If $y=3 \sin \theta-2 \sin ^{3} \theta$ and $x=3 \cos \theta-2 \cos ^{3} \theta$ find $\frac{d y}{d x}$ at

$$
\theta=\frac{\pi}{4}
$$

c) Find the radius of curvature of the curve $x y=c$ at point $(c, c)$
d) Discuss maxima and minima of the function " $\tan x-2 x$ ".
3. Attempt any THREE of the following:
a) Find the equation of tangent and normal to the curve $y=x(2-x)$ at point $(2,0)$.
b) Find $\frac{d y}{d x}, y=\left(\sin ^{-1} x\right)^{x}+(\cos x)^{\sin x}$
c) If $y=\tan ^{-1}\left[\frac{5 x-4}{5+4 x}\right]$ find $\frac{d y}{d x}$
d) Evaluate $\int \frac{\sec ^{2} x}{(1+\tan x)(2+\tan x)} d x$
4. Attempt any THREE of the following:
a) Evaluate $: \int \frac{d x}{2 x^{2}+3 x+1}$
b) Evaluate $: \int \frac{d x}{1+\sin x+\cos x}$
c) Evaluate $: \int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
d) Evaluate $: \int_{0}^{\pi / 2} \frac{\tan x}{1+\tan x} d x$
e) Evaluate : $\int \frac{x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x$
5. Attempt any TWO of the following:
a) Find the area between the curves $y^{2}-2 x=0$ and $y^{2}+4 x-12=0$
b) Attempt the following:
(i) Form the differential equation if

$$
y=A \cos (\log x)+B \sin (\log x)
$$

(ii) Solve

$$
x \log x \frac{d y}{d x}+y=2 \log x
$$

c) A circular column of radius ' $x$ ' and having depth $y$ support a load. The equation of equilibrium is $2 \frac{d y}{d x}-k x=0$ where ' $k$ ' is constant. Find the relation between $x$ and $y$.
6. Attempt any TWO of the following:
a) Using Simpson's $1 / 3$ rd rule, evaluate $\int_{0}^{2} \frac{1}{1+x^{3}} d x$ with $n=4$.
b) Using Simpson's $3 / 8$ th rule, evaluate $\int_{0}^{\pi / 2} \cos x d x$ with $n=8$
c) Attempt the following:
(i) Using Trapezoidal rule, evaluate $\int_{-1}^{1}\left(1+x+x^{2}+x^{3}\right) d x$ by taking $n=2$.
(ii) Using Simpson's $1 / 3$ rd rule evaluate $\int_{1}^{3} \frac{d x}{x}$, taking $h=0.5$.

